BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15041682)

  • 1. Experimental and computational studies of the desensitization process in the bovine rhodopsin-arrestin complex.
    Ling Y; Ascano M; Robinson P; Gregurick SK
    Biophys J; 2004 Apr; 86(4):2445-54. PubMed ID: 15041682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodopsin's carboxyl-terminal threonines are required for wild-type arrestin-mediated quench of transducin activation in vitro.
    Brannock MT; Weng K; Robinson PR
    Biochemistry; 1999 Mar; 38(12):3770-7. PubMed ID: 10090766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arrestin residues involved in the functional binding of arrestin to phosphorylated, photolyzed rhodopsin.
    Ascano MT; Smith WC; Gregurick SK; Robinson PR
    Mol Vis; 2006 Dec; 12():1516-25. PubMed ID: 17167410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C-terminal threonines and serines play distinct roles in the desensitization of rhodopsin, a G protein-coupled receptor.
    Azevedo AW; Doan T; Moaven H; Sokal I; Baameur F; Vishnivetskiy SA; Homan KT; Tesmer JJ; Gurevich VV; Chen J; Rieke F
    Elife; 2015 Apr; 4():. PubMed ID: 25910054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential phosphorylation of the rhodopsin cytoplasmic tail mediates the binding of arrestin and its splice variant, p44.
    Ascano M; Robinson PR
    Biochemistry; 2006 Feb; 45(7):2398-407. PubMed ID: 16475829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of arrestin to cytoplasmic loop mutants of bovine rhodopsin.
    Raman D; Osawa S; Weiss ER
    Biochemistry; 1999 Apr; 38(16):5117-23. PubMed ID: 10213616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhodopsin phosphorylation sites and their role in arrestin binding.
    Zhang L; Sports CD; Osawa S; Weiss ER
    J Biol Chem; 1997 Jun; 272(23):14762-8. PubMed ID: 9169442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct binding of visual arrestin to a rhodopsin carboxyl terminal synthetic phosphopeptide.
    Liu P; Roush ED; Bruno J; Osawa S; Weiss ER
    Mol Vis; 2004 Oct; 10():712-9. PubMed ID: 15480300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodopsin arginine-135 mutants are phosphorylated by rhodopsin kinase and bind arrestin in the absence of 11-cis-retinal.
    Shi W; Sports CD; Raman D; Shirakawa S; Osawa S; Weiss ER
    Biochemistry; 1998 Apr; 37(14):4869-74. PubMed ID: 9538004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of arrestin: requirement of phosphorylation as the negative charge on residues in synthetic peptides from the carboxyl-terminal region of rhodopsin.
    McDowell JH; Robinson PR; Miller RL; Brannock MT; Arendt A; Smith WC; Hargrave PA
    Invest Ophthalmol Vis Sci; 2001 Jun; 42(7):1439-43. PubMed ID: 11381044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The surface of visual arrestin that binds to rhodopsin.
    Smith WC; Dinculescu A; Peterson JJ; McDowell JH
    Mol Vis; 2004 Jun; 10():392-8. PubMed ID: 15215746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Polar Core and Weakly Fixed C-Tail in Squid Arrestin Provide New Insight into Interaction with Rhodopsin.
    Bandyopadhyay A; Van Eps N; Eger BT; Rauscher S; Yedidi RS; Moroni T; West GM; Robinson KA; Griffin PR; Mitchell J; Ernst OP
    J Mol Biol; 2018 Oct; 430(21):4102-4118. PubMed ID: 30120952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-terminal and C-terminal domains of arrestin both contribute in binding to rhodopsin.
    Skegro D; Pulvermüller A; Krafft B; Granzin J; Hofmann KP; Büldt G; Schlesinger R
    Photochem Photobiol; 2007; 83(2):385-92. PubMed ID: 17132044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of phosphorylation on arrestin-rhodopsin interaction in the squid visual system.
    Robinson KA; Ou WL; Guan X; Sugamori KS; Bandyopadhyay A; Ernst OP; Mitchell J
    J Neurochem; 2015 Dec; 135(6):1129-39. PubMed ID: 26375013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual arrestin binding to rhodopsin. Diverse functional roles of positively charged residues within the phosphorylation-recognition region of arrestin.
    Gurevich VV; Benovic JL
    J Biol Chem; 1995 Mar; 270(11):6010-6. PubMed ID: 7890732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arrestin with a single amino acid substitution quenches light-activated rhodopsin in a phosphorylation-independent fashion.
    Gray-Keller MP; Detwiler PB; Benovic JL; Gurevich VV
    Biochemistry; 1997 Jun; 36(23):7058-63. PubMed ID: 9188704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of phosphorylation-recognition by visual arrestin and the transition of arrestin into a high affinity binding state.
    Gurevich VV; Benovic JL
    Mol Pharmacol; 1997 Jan; 51(1):161-9. PubMed ID: 9016359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The arrestin-bound conformation and dynamics of the phosphorylated carboxy-terminal region of rhodopsin.
    Kisselev OG; McDowell JH; Hargrave PA
    FEBS Lett; 2004 Apr; 564(3):307-11. PubMed ID: 15111114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interaction with the cytoplasmic loops of rhodopsin plays a crucial role in arrestin activation and binding.
    Raman D; Osawa S; Gurevich VV; Weiss ER
    J Neurochem; 2003 Mar; 84(5):1040-50. PubMed ID: 12603828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based biophysical analysis of the interaction of rhodopsin with G protein and arrestin.
    Sommer ME; Elgeti M; Hildebrand PW; Szczepek M; Hofmann KP; Scheerer P
    Methods Enzymol; 2015; 556():563-608. PubMed ID: 25857800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.