These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 15042591)

  • 1. Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae.
    Moraitis C; Curran BP
    Yeast; 2004 Mar; 21(4):313-23. PubMed ID: 15042591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can the different heat shock response thresholds found in fermenting and respiring yeast cells be attributed to their differential redox states?
    Moraitis C; Curran BP
    Yeast; 2007 Aug; 24(8):653-66. PubMed ID: 17533621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of hydrogen peroxide and ascorbic acid on the aerobic thermosensitivity of yeast cells grown under aerobic and anoxic conditions.
    Moraitis C; Curran BP
    Yeast; 2010 Feb; 27(2):103-14. PubMed ID: 20014153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat shock protein synthesis and trehalose accumulation are not required for induced thermotolerance in depressed Saccharomyces cerevisiae.
    Gross C; Watson K
    Biochem Biophys Res Commun; 1996 Mar; 220(3):766-72. PubMed ID: 8607839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat shock prevents alpha-synuclein-induced apoptosis in a yeast model of Parkinson's disease.
    Flower TR; Chesnokova LS; Froelich CA; Dixon C; Witt SN
    J Mol Biol; 2005 Sep; 351(5):1081-100. PubMed ID: 16051265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Svf1 inhibits reactive oxygen species generation and promotes survival under conditions of oxidative stress in Saccharomyces cerevisiae.
    Brace JL; Vanderweele DJ; Rudin CM
    Yeast; 2005 Jun; 22(8):641-52. PubMed ID: 16034825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Heat shock-induced changes in the respiration of the yeast Saccharomyces cerevisiae].
    Rikhvanov EG; Varakina NN; Rusaleva TM; Rachenko EI; Kiseleva VA; Voĭnikov VK
    Mikrobiologiia; 2001; 70(4):531-5. PubMed ID: 11558280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The determinants of heat-shock element-directed lacZ expression in Saccharomyces cerevisiae.
    Kirk N; Piper PW
    Yeast; 1991; 7(6):539-46. PubMed ID: 1767585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pro-oxidative vs antioxidative properties of ascorbic acid in chromium(VI)-induced damage: an in vivo and in vitro approach.
    Poljsak B; Gazdag Z; Jenko-Brinovec S; Fujs S; Pesti M; Bélagyi J; Plesnicar S; Raspor P
    J Appl Toxicol; 2005; 25(6):535-48. PubMed ID: 16092082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CAP2 enhances germination of transgenic tobacco seeds at high temperature and promotes heat stress tolerance in yeast.
    Shukla RK; Tripathi V; Jain D; Yadav RK; Chattopadhyay D
    FEBS J; 2009 Sep; 276(18):5252-62. PubMed ID: 19674105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X; Takagi H
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1343-51. PubMed ID: 17387467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae.
    Kim IS; Kim YS; Yoon HS
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3519-33. PubMed ID: 23053072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of the yeast antioxidant enzyme Mpr1 for enhanced activity and stability.
    Iinoya K; Kotani T; Sasano Y; Takagi H
    Biotechnol Bioeng; 2009 Jun; 103(2):341-52. PubMed ID: 19170243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377.
    Kim IS; Moon HY; Yun HS; Jin I
    J Microbiol; 2006 Oct; 44(5):492-501. PubMed ID: 17082742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermotolerance induced at a fever temperature of 40 degrees C protects cells against hyperthermia-induced apoptosis mediated by death receptor signalling.
    Bettaieb A; Averill-Bates DA
    Biochem Cell Biol; 2008 Dec; 86(6):521-38. PubMed ID: 19088800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of heat shock preconditioning on ROS scavenging activity in rat skeletal muscle after downhill running.
    Shima Y; Kitaoka K; Yoshiki Y; Maruhashi Y; Tsuyama T; Tomita K
    J Physiol Sci; 2008 Oct; 58(5):341-8. PubMed ID: 18838049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive oxygen species as second messengers? Induction of the expression of yeast catalase T gene by heat and hyperosmotic stress does not require oxygen.
    Krawiec Z; Biliński T; Schüller C; Ruis H
    Acta Biochim Pol; 2000; 47(1):201-7. PubMed ID: 10961694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance.
    Rikhvanov EG; Fedoseeva IV; Varakina NN; Rusaleva TM; Fedyaeva AV
    Biochemistry (Mosc); 2014 Jan; 79(1):16-24. PubMed ID: 24512659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus.
    Fangue NA; Hofmeister M; Schulte PM
    J Exp Biol; 2006 Aug; 209(Pt 15):2859-72. PubMed ID: 16857869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae.
    Sugiyama K; Kawamura A; Izawa S; Inoue Y
    Biochem J; 2000 Nov; 352 Pt 1(Pt 1):71-8. PubMed ID: 11062059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.