BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 15043055)

  • 1. Class III nucleotide cyclases in bacteria and archaebacteria: lineage-specific expansion of adenylyl cyclases and a dearth of guanylyl cyclases.
    Shenroy AR; Visweswariah SS
    FEBS Lett; 2004 Mar; 561(1-3):11-21. PubMed ID: 15043055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CyaG, a novel cyanobacterial adenylyl cyclase and a possible ancestor of mammalian guanylyl cyclases.
    Kasahara M; Unno T; Yashiro K; Ohmori M
    J Biol Chem; 2001 Mar; 276(13):10564-9. PubMed ID: 11134014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guanylyl cyclases across the tree of life.
    Schaap P
    Front Biosci; 2005 May; 10():1485-98. PubMed ID: 15769639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate specificity determinants of class III nucleotidyl cyclases.
    Bharambe NG; Barathy DV; Syed W; Visweswariah SS; Colaςo M; Misquith S; Suguna K
    FEBS J; 2016 Oct; 283(20):3723-3738. PubMed ID: 27542992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lineage-specific domain fusion in the evolution of purine nucleotide cyclases in cyanobacteria.
    Wu J; Bai J; Bao Q; Zhao F
    J Mol Evol; 2008 Jul; 67(1):85-94. PubMed ID: 18551331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic mechanism of the adenylyl and guanylyl cyclases: modeling and mutational analysis.
    Liu Y; Ruoho AE; Rao VD; Hurley JH
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13414-9. PubMed ID: 9391039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exchange of substrate and inhibitor specificities between adenylyl and guanylyl cyclases.
    Sunahara RK; Beuve A; Tesmer JJ; Sprang SR; Garbers DL; Gilman AG
    J Biol Chem; 1998 Jun; 273(26):16332-8. PubMed ID: 9632695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deducing the origin of soluble adenylyl cyclase, a gene lost in multiple lineages.
    Roelofs J; Van Haastert PJ
    Mol Biol Evol; 2002 Dec; 19(12):2239-46. PubMed ID: 12446814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The class III adenylyl cyclases: multi-purpose signalling modules.
    Linder JU; Schultz JE
    Cell Signal; 2003 Dec; 15(12):1081-9. PubMed ID: 14575863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conservation of functional domain structure in bicarbonate-regulated "soluble" adenylyl cyclases in bacteria and eukaryotes.
    Kobayashi M; Buck J; Levin LR
    Dev Genes Evol; 2004 Oct; 214(10):503-9. PubMed ID: 15322879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures, mechanism, regulation and evolution of class III nucleotidyl cyclases.
    Sinha SC; Sprang SR
    Rev Physiol Biochem Pharmacol; 2006; 157():105-40. PubMed ID: 17236651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A guanylyl cyclase from Paramecium with 22 transmembrane spans. Expression of the catalytic domains and formation of chimeras with the catalytic domains of mammalian adenylyl cyclases.
    Linder JU; Hoffmann T; Kurz U; Schultz JE
    J Biol Chem; 2000 Apr; 275(15):11235-40. PubMed ID: 10753932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolution of guanylyl cyclases as multidomain proteins: conserved features of kinase-cyclase domain fusions.
    Biswas KH; Shenoy AR; Dutta A; Visweswariah SS
    J Mol Evol; 2009 Jun; 68(6):587-602. PubMed ID: 19495554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational recognition and analysis of hitherto uncharacterized nucleotide cyclase-like proteins in bacteria.
    Ramakrishnan G; Jain A; Chandra N; Srinivasan N
    Biol Direct; 2016 May; 11():27. PubMed ID: 27246835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guanylyl cyclases in unicellular organisms.
    Linder JU; Schultz JE
    Mol Cell Biochem; 2002 Jan; 230(1-2):149-58. PubMed ID: 11952090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The conserved asparagine and arginine are essential for catalysis of mammalian adenylyl cyclase.
    Yan SZ; Huang ZH; Shaw RS; Tang WJ
    J Biol Chem; 1997 May; 272(19):12342-9. PubMed ID: 9139678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two amino acid substitutions convert a guanylyl cyclase, RetGC-1, into an adenylyl cyclase.
    Tucker CL; Hurley JH; Miller TR; Hurley JB
    Proc Natl Acad Sci U S A; 1998 May; 95(11):5993-7. PubMed ID: 9600905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and degradation of cAMP in
    Saraullo V; Di Siervi N; Jerez B; Davio C; Zurita A
    Biochem J; 2017 Nov; 474(23):4001-4017. PubMed ID: 29054977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analysis of human soluble adenylyl cyclase and crystal structures of its nucleotide complexes-implications for cyclase catalysis and evolution.
    Kleinboelting S; van den Heuvel J; Steegborn C
    FEBS J; 2014 Sep; 281(18):4151-64. PubMed ID: 25040695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the nucleotidyl cyclase helical domain in catalytically active dimer formation.
    Vercellino I; Rezabkova L; Olieric V; Polyhach Y; Weinert T; Kammerer RA; Jeschke G; Korkhov VM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9821-E9828. PubMed ID: 29087332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.