These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 15043251)
1. Stationary-phase effects in gradient high-performance liquid chromatography. Jandera P; Halama M; Novotná K J Chromatogr A; 2004 Mar; 1030(1-2):33-41. PubMed ID: 15043251 [TBL] [Abstract][Full Text] [Related]
2. Analysis of linear and cyclic oligomers in polyamide-6 without sample preparation by liquid chromatography using the sandwich injection method. III. Separation mechanism and gradient optimization. Mengerink Y; Peters R; van der Wal S; Claessens HA; Cramers CA J Chromatogr A; 2002 Mar; 949(1-2):307-26. PubMed ID: 11999748 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications. Aral T; Aral H; Ziyadanoğulları B; Ziyadanoğulları R Talanta; 2015 Jan; 131():64-73. PubMed ID: 25281074 [TBL] [Abstract][Full Text] [Related]
4. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography]. Shan YC; Zhang YK; Zhao RH Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907 [TBL] [Abstract][Full Text] [Related]
5. Alternative high-performance liquid chromatographic peptide separation and purification concept using a new mixed-mode reversed-phase/weak anion-exchange type stationary phase. Nogueira R; Lämmerhofer M; Lindner W J Chromatogr A; 2005 Sep; 1089(1-2):158-69. PubMed ID: 16130784 [TBL] [Abstract][Full Text] [Related]
6. Factors affecting the separation and loading capacity of proteins in preparative gradient elution high-performance liquid chromatography. Yang YB; Harrison K; Carr D; Guiochon G J Chromatogr; 1992 Jan; 590(1):35-47. PubMed ID: 1318319 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the properties of stationary phases for liquid chromatography in aqueous mobile phases using aromatic sulphonic acids as the test compounds. Jandera P; Bocian S; Molíková M; Buszewski B J Chromatogr A; 2009 Jan; 1216(2):237-48. PubMed ID: 19081105 [TBL] [Abstract][Full Text] [Related]
8. Characterization of capillary-channeled polymer fiber stationary phases for high-performance liquid chromatography protein separations: Comparative analysis with a packed-bed column. Nelson DM; Marcus RK Anal Chem; 2006 Dec; 78(24):8462-71. PubMed ID: 17165840 [TBL] [Abstract][Full Text] [Related]
9. Capillary-channeled polymer fibers as stationary phases in liquid chromatography separations. Marcus RK; Davis WC; Knippel BC; LaMotte L; Hill TA; Perahia D; Jenkins JD J Chromatogr A; 2003 Jan; 986(1):17-31. PubMed ID: 12585319 [TBL] [Abstract][Full Text] [Related]
10. Mobile phase effects in reversed-phase and hydrophilic interaction liquid chromatography revisited. Jandera P; Hájek T; Šromová Z J Chromatogr A; 2018 Mar; 1543():48-57. PubMed ID: 29486886 [TBL] [Abstract][Full Text] [Related]
11. Green chromatography separation of analytes of greatly differing properties using a polyethylene glycol stationary phase and a low-toxic water-based mobile phase. Šatínský D; Brabcová I; Maroušková A; Chocholouš P; Solich P Anal Bioanal Chem; 2013 Jul; 405(18):6105-15. PubMed ID: 23657456 [TBL] [Abstract][Full Text] [Related]
13. Retention times and bandwidths in reversed-phase gradient liquid chromatography of peptides and proteins. Jandera P; Kučerová Z; Urban J J Chromatogr A; 2011 Dec; 1218(49):8874-89. PubMed ID: 21742334 [TBL] [Abstract][Full Text] [Related]
14. The separation of flavonoids from Pongamia pinnata using combination columns in high-speed counter-current chromatography with a three-phase solvent system. Yin H; Zhang S; Long L; Yin H; Tian X; Luo X; Nan H; He S J Chromatogr A; 2013 Nov; 1315():80-5. PubMed ID: 24090596 [TBL] [Abstract][Full Text] [Related]
15. Effect of gradient steepness on the kinetic performance limits and peak compression for reversed-phase gradient separations of small molecules. Vaňková N; De Vos J; Tyteca E; Desmet G; Edge T; Česlová L; Česla P; Eeltink S J Chromatogr A; 2015 Aug; 1409():152-8. PubMed ID: 26216237 [TBL] [Abstract][Full Text] [Related]
16. Two-column sequential injection chromatography--new approach for fast and effective analysis and its comparison with gradient elution chromatography. Chocholous P; Satínský D; Sklenárová H; Solich P Anal Chim Acta; 2010 May; 668(1):61-6. PubMed ID: 20457303 [TBL] [Abstract][Full Text] [Related]
17. On the feasibility to conduct gradient liquid chromatography separations in narrow-bore columns at pressures up to 2000bar. De Pauw R; Swier T; Degreef B; Desmet G; Broeckhoven K J Chromatogr A; 2016 Nov; 1473():48-55. PubMed ID: 28029367 [TBL] [Abstract][Full Text] [Related]
18. Method for characterization of selectivity in reversed-phase liquid chromatography. III. Retention behaviour in gradient-elution chromatography: application to the chromatography of pesticide compounds. Jandera P; Spacek M J Chromatogr; 1986 Sep; 366():107-26. PubMed ID: 3782316 [TBL] [Abstract][Full Text] [Related]
19. Reversed-phase liquid chromatography system constant database over an extended mobile phase composition range for 25 siloxane-bonded silica-based columns. Poole CF J Chromatogr A; 2019 Aug; 1600():112-126. PubMed ID: 31128882 [TBL] [Abstract][Full Text] [Related]
20. Impact of pore structural parameters on column performance and resolution of reversed-phase monolithic silica columns for peptides and proteins. Skudas R; Grimes BA; Machtejevas E; Kudirkaite V; Kornysova O; Hennessy TP; Lubda D; Unger KK J Chromatogr A; 2007 Mar; 1144(1):72-84. PubMed ID: 17084406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]