These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 15043926)

  • 21. Sedimentation equilibrium: a valuable tool to study homologous and heterogeneous interactions of proteins or proteins and nucleic acids.
    Behlke J; Ristau O
    Eur Biophys J; 2003 Aug; 32(5):427-31. PubMed ID: 12783141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of protein-protein interactions of single-stranded DNA-binding proteins by analytical ultracentrifugation.
    Naue N; Curth U
    Methods Mol Biol; 2012; 922():133-49. PubMed ID: 22976181
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling the interplay of single-stranded binding proteins and nucleic acid secondary structure.
    Forties RA; Bundschuh R
    Bioinformatics; 2010 Jan; 26(1):61-7. PubMed ID: 19889798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Database and structural characterization of intermolecular interactions in nucleic acid and protein complex.
    Fujii S
    Nucleic Acids Symp Ser (Oxf); 2004; (48):127-8. PubMed ID: 17150511
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sedimentation velocity method in the analytical ultracentrifuge for the study of protein-protein interactions.
    Urbanke C; Witte G; Curth U
    Methods Mol Biol; 2005; 305():101-14. PubMed ID: 15939995
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional structural motifs for protein-ligand, protein-protein, and protein-nucleic acid interactions and their connection to supersecondary structures.
    Kinjo AR; Nakamura H
    Methods Mol Biol; 2013; 932():295-315. PubMed ID: 22987360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The emerging role of MS in structure elucidation of protein-nucleic acid complexes.
    Gordiyenko Y; Robinson CV
    Biochem Soc Trans; 2008 Aug; 36(Pt 4):723-31. PubMed ID: 18631148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analytical ultracentrifugation studies of translin: analysis of protein-DNA interactions using a single-stranded fluorogenic oligonucleotide.
    Lee SP; Fuior E; Lewis MS; Han MK
    Biochemistry; 2001 Nov; 40(46):14081-8. PubMed ID: 11705401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein-nucleic acid interactions.
    Rhodes D; Burley SK
    Curr Opin Struct Biol; 2000 Feb; 10(1):75-7. PubMed ID: 10766517
    [No Abstract]   [Full Text] [Related]  

  • 30. Fluorescence quenching methods to study protein-nucleic acid interactions.
    Roy S
    Methods Enzymol; 2004; 379():175-87. PubMed ID: 15051358
    [No Abstract]   [Full Text] [Related]  

  • 31. Variable-Field Analytical Ultracentrifugation: I. Time-Optimized Sedimentation Equilibrium.
    Ma J; Metrick M; Ghirlando R; Zhao H; Schuck P
    Biophys J; 2015 Aug; 109(4):827-37. PubMed ID: 26287634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overview of current methods in sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation.
    Zhao H; Brautigam CA; Ghirlando R; Schuck P
    Curr Protoc Protein Sci; 2013 Feb; Chapter 20():Unit20.12. PubMed ID: 23377850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A general method of analysis of ligand binding to competing macromolecules using the spectroscopic signal originating from a reference macromolecule. Application to Escherichia coli replicative helicase DnaB protein nucleic acid interactions.
    Jezewska MJ; Bujalowski W
    Biochemistry; 1996 Feb; 35(7):2117-28. PubMed ID: 8652554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sedimentation velocity analysis of heterogeneous protein-protein interactions: Lamm equation modeling and sedimentation coefficient distributions c(s).
    Dam J; Velikovsky CA; Mariuzza RA; Urbanke C; Schuck P
    Biophys J; 2005 Jul; 89(1):619-34. PubMed ID: 15863475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a Quantitative BRET Affinity Assay for Nucleic Acid-Protein Interactions.
    Vickers TA; Crooke ST
    PLoS One; 2016; 11(8):e0161930. PubMed ID: 27571227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overview of the quantitation of protein interactions.
    Philo JS
    Curr Protoc Protein Sci; 2001 May; Chapter 20():Unit20.1. PubMed ID: 18429156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectral and Hydrodynamic Analysis of West Nile Virus RNA-Protein Interactions by Multiwavelength Sedimentation Velocity in the Analytical Ultracentrifuge.
    Zhang J; Pearson JZ; Gorbet GE; Cölfen H; Germann MW; Brinton MA; Demeler B
    Anal Chem; 2017 Jan; 89(1):862-870. PubMed ID: 27977168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analytical ultracentrifugation: A versatile tool for the characterisation of macromolecular complexes in solution.
    Patel TR; Winzor DJ; Scott DJ
    Methods; 2016 Feb; 95():55-61. PubMed ID: 26555086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterizing protein-protein interactions by sedimentation velocity analytical ultracentrifugation.
    Brown PH; Balbo A; Schuck P
    Curr Protoc Immunol; 2008 May; Chapter 18():18.15.1-18.15.39. PubMed ID: 18491296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sedimentation Velocity Methods for the Characterization of Protein Heterogeneity and Protein Affinity Interactions.
    Ebel C; Birck C
    Methods Mol Biol; 2021; 2247():155-171. PubMed ID: 33301117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.