These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 15044235)
1. Exploiting the kernel trick to correlate fragment ions for peptide identification via tandem mass spectrometry. Fu Y; Yang Q; Sun R; Li D; Zeng R; Ling CX; Gao W Bioinformatics; 2004 Aug; 20(12):1948-54. PubMed ID: 15044235 [TBL] [Abstract][Full Text] [Related]
2. pFind 2.0: a software package for peptide and protein identification via tandem mass spectrometry. Wang LH; Li DQ; Fu Y; Wang HP; Zhang JF; Yuan ZF; Sun RX; Zeng R; He SM; Gao W Rapid Commun Mass Spectrom; 2007; 21(18):2985-91. PubMed ID: 17702057 [TBL] [Abstract][Full Text] [Related]
3. A novel scoring schema for peptide identification by searching protein sequence databases using tandem mass spectrometry data. Zhang Z; Sun S; Zhu X; Chang S; Liu X; Yu C; Bu D; Chen R BMC Bioinformatics; 2006 Apr; 7():222. PubMed ID: 16638152 [TBL] [Abstract][Full Text] [Related]
4. pFind: a novel database-searching software system for automated peptide and protein identification via tandem mass spectrometry. Li D; Fu Y; Sun R; Ling CX; Wei Y; Zhou H; Zeng R; Yang Q; He S; Gao W Bioinformatics; 2005 Jul; 21(13):3049-50. PubMed ID: 15817687 [TBL] [Abstract][Full Text] [Related]
5. The probability distribution for a random match between an experimental-theoretical spectral pair in tandem mass spectrometry. Fridman T; Razumovskaya J; Verberkmoes N; Hurst G; Protopopescu V; Xu Y J Bioinform Comput Biol; 2005 Apr; 3(2):455-76. PubMed ID: 15852515 [TBL] [Abstract][Full Text] [Related]
6. Accelerating the scoring module of mass spectrometry-based peptide identification using GPUs. Li Y; Chi H; Xia L; Chu X BMC Bioinformatics; 2014 Apr; 15():121. PubMed ID: 24773593 [TBL] [Abstract][Full Text] [Related]
7. A suffix tree approach to the interpretation of tandem mass spectra: applications to peptides of non-specific digestion and post-translational modifications. Lu B; Chen T Bioinformatics; 2003 Oct; 19 Suppl 2():ii113-21. PubMed ID: 14534180 [TBL] [Abstract][Full Text] [Related]
8. Sequence optimization as an alternative to de novo analysis of tandem mass spectrometry data. Heredia-Langner A; Cannon WR; Jarman KD; Jarman KH Bioinformatics; 2004 Sep; 20(14):2296-304. PubMed ID: 15087321 [TBL] [Abstract][Full Text] [Related]
9. Complexity and scoring function of MS/MS peptide de novo sequencing. Xu C; Ma B Comput Syst Bioinformatics Conf; 2006; ():361-9. PubMed ID: 17369655 [TBL] [Abstract][Full Text] [Related]
10. Predicting intensity ranks of peptide fragment ions. Frank AM J Proteome Res; 2009 May; 8(5):2226-40. PubMed ID: 19256476 [TBL] [Abstract][Full Text] [Related]
11. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins. Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983 [TBL] [Abstract][Full Text] [Related]
12. Identification of bacteria using tandem mass spectrometry combined with a proteome database and statistical scoring. Dworzanski JP; Snyder AP; Chen R; Zhang H; Wishart D; Li L Anal Chem; 2004 Apr; 76(8):2355-66. PubMed ID: 15080748 [TBL] [Abstract][Full Text] [Related]
13. A graph-theoretic approach for the separation of b and y ions in tandem mass spectra. Yan B; Pan C; Olman VN; Hettich RL; Xu Y Bioinformatics; 2005 Mar; 21(5):563-74. PubMed ID: 15454408 [TBL] [Abstract][Full Text] [Related]
14. Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book. Sadygov RG; Cociorva D; Yates JR Nat Methods; 2004 Dec; 1(3):195-202. PubMed ID: 15789030 [TBL] [Abstract][Full Text] [Related]
15. Improving peptide identification with single-stage mass spectrum peaks. He Z; Yu W Bioinformatics; 2009 Nov; 25(22):2969-74. PubMed ID: 19689954 [TBL] [Abstract][Full Text] [Related]
16. AMASS: software for automatically validating the quality of MS/MS spectrum from SEQUEST results. Sun W; Li F; Wang J; Zheng D; Gao Y Mol Cell Proteomics; 2004 Dec; 3(12):1194-9. PubMed ID: 15489460 [TBL] [Abstract][Full Text] [Related]
17. Peptide sequence tag-based blind identification of post-translational modifications with point process model. Liu C; Yan B; Song Y; Xu Y; Cai L Bioinformatics; 2006 Jul; 22(14):e307-13. PubMed ID: 16873487 [TBL] [Abstract][Full Text] [Related]
18. Non-parametric estimation of posterior error probabilities associated with peptides identified by tandem mass spectrometry. Käll L; Storey JD; Noble WS Bioinformatics; 2008 Aug; 24(16):i42-8. PubMed ID: 18689838 [TBL] [Abstract][Full Text] [Related]
19. Modeling and characterization of multi-charge mass spectra for peptide sequencing. Chong KF; Ning K; Leong HW; Pevzner P J Bioinform Comput Biol; 2006 Dec; 4(6):1329-52. PubMed ID: 17245817 [TBL] [Abstract][Full Text] [Related]
20. MS-Simulator: predicting y-ion intensities for peptides with two charges based on the intensity ratio of neighboring ions. Sun S; Yang F; Yang Q; Zhang H; Wang Y; Bu D; Ma B J Proteome Res; 2012 Sep; 11(9):4509-16. PubMed ID: 22794508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]