These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 15044239)

  • 1. Hypothesis-driven approach to predict transcriptional units from gene expression data.
    Steinhauser D; Junker BH; Luedemann A; Selbig J; Kopka J
    Bioinformatics; 2004 Aug; 20(12):1928-39. PubMed ID: 15044239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using functional and organizational information to improve genome-wide computational prediction of transcription units on pathway-genome databases.
    Romero PR; Karp PD
    Bioinformatics; 2004 Mar; 20(5):709-17. PubMed ID: 14751985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying operons and untranslated regions of transcripts using Escherichia coli RNA expression analysis.
    Tjaden B; Haynor DR; Stolyar S; Rosenow C; Kolker E
    Bioinformatics; 2002; 18 Suppl 1():S337-44. PubMed ID: 12169564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidation of directionality for co-expressed genes: predicting intra-operon termination sites.
    Gupta A; Maranas CD; Albert R
    Bioinformatics; 2006 Jan; 22(2):209-14. PubMed ID: 16287937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CSB.DB: a comprehensive systems-biology database.
    Steinhauser D; Usadel B; Luedemann A; Thimm O; Kopka J
    Bioinformatics; 2004 Dec; 20(18):3647-51. PubMed ID: 15247097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A powerful non-homology method for the prediction of operons in prokaryotes.
    Moreno-Hagelsieb G; Collado-Vides J
    Bioinformatics; 2002; 18 Suppl 1():S329-36. PubMed ID: 12169563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-expression pattern from DNA microarray experiments as a tool for operon prediction.
    Sabatti C; Rohlin L; Oh MK; Liao JC
    Nucleic Acids Res; 2002 Jul; 30(13):2886-93. PubMed ID: 12087173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression analysis on biochemical networks using the Potts spin model.
    König R; Eils R
    Bioinformatics; 2004 Jul; 20(10):1500-5. PubMed ID: 15231542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mining time-dependent gene features.
    Capobianco E
    J Bioinform Comput Biol; 2005 Oct; 3(5):1191-205. PubMed ID: 16278954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli.
    Gutierrez-Ríos RM; Freyre-Gonzalez JA; Resendis O; Collado-Vides J; Saier M; Gosset G
    BMC Microbiol; 2007 Jun; 7():53. PubMed ID: 17559662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bayesian network approach to operon prediction.
    Bockhorst J; Craven M; Page D; Shavlik J; Glasner J
    Bioinformatics; 2003 Jul; 19(10):1227-35. PubMed ID: 12835266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian sparse hidden components analysis for transcription regulation networks.
    Sabatti C; James GM
    Bioinformatics; 2006 Mar; 22(6):739-46. PubMed ID: 16368767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of relationships between transcriptional units and operon structures in Bacillus subtilis and Escherichia coli.
    Okuda S; Kawashima S; Kobayashi K; Ogasawara N; Kanehisa M; Goto S
    BMC Genomics; 2007 Feb; 8():48. PubMed ID: 17298663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovering functional gene expression patterns in the metabolic network of Escherichia coli with wavelets transforms.
    König R; Schramm G; Oswald M; Seitz H; Sager S; Zapatka M; Reinelt G; Eils R
    BMC Bioinformatics; 2006 Mar; 7():119. PubMed ID: 16524469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robustness analysis and tuning of synthetic gene networks.
    Batt G; Yordanov B; Weiss R; Belta C
    Bioinformatics; 2007 Sep; 23(18):2415-22. PubMed ID: 17660209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of Escherichia coli transcriptional regulatory networks via regulon-based associations.
    Zare H; Sangurdekar D; Srivastava P; Kaveh M; Khodursky A
    BMC Syst Biol; 2009 Apr; 3():39. PubMed ID: 19366454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relating gene expression data on two-component systems to functional annotations in Escherichia coli.
    Denton AM; Wu J; Townsend MK; Sule P; Prüss BM
    BMC Bioinformatics; 2008 Jun; 9():294. PubMed ID: 18578884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved Units of Co-Expression in Bacterial Genomes: An Evolutionary Insight into Transcriptional Regulation.
    Junier I; Rivoire O
    PLoS One; 2016; 11(5):e0155740. PubMed ID: 27195891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and Functional Insights into the Regulation of d-Galactonate Metabolism by the Transcriptional Regulator DgoR in
    Singh B; Arya G; Kundu N; Sangwan A; Nongthombam S; Chaba R
    J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30455279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fuzzy guided genetic algorithm for operon prediction.
    Jacob E; Sasikumar R; Nair KN
    Bioinformatics; 2005 Apr; 21(8):1403-7. PubMed ID: 15564303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.