BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 15044463)

  • 1. C-terminal lysines determine phospholipid interaction of sarcomeric mitochondrial creatine kinase.
    Schlattner U; Gehring F; Vernoux N; Tokarska-Schlattner M; Neumann D; Marcillat O; Vial C; Wallimann T
    J Biol Chem; 2004 Jun; 279(23):24334-42. PubMed ID: 15044463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Octamers of mitochondrial creatine kinase isoenzymes differ in stability and membrane binding.
    Schlattner U; Wallimann T
    J Biol Chem; 2000 Jun; 275(23):17314-20. PubMed ID: 10748055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial creatine kinase binding to phospholipids decreases fluidity of membranes and promotes new lipid-induced beta structures as monitored by red edge excitation shift, laurdan fluorescence, and FTIR.
    Granjon T; Vacheron MJ; Vial C; Buchet R
    Biochemistry; 2001 May; 40(20):6016-26. PubMed ID: 11352737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of peroxynitrite on human mitochondrial creatine kinase isoenzymes. Inactivation, octamer destabilization, and identification of involved residues.
    Wendt S; Schlattner U; Wallimann T
    J Biol Chem; 2003 Jan; 278(2):1125-30. PubMed ID: 12401781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple interference of anthracyclines with mitochondrial creatine kinases: preferential damage of the cardiac isoenzyme and its implications for drug cardiotoxicity.
    Tokarska-Schlattner M; Wallimann T; Schlattner U
    Mol Pharmacol; 2002 Mar; 61(3):516-23. PubMed ID: 11854431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantitative approach to membrane binding of human ubiquitous mitochondrial creatine kinase using surface plasmon resonance.
    Schlattner U; Wallimann T
    J Bioenerg Biomembr; 2000 Feb; 32(1):123-31. PubMed ID: 11768757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Octamer formation and coupling of cardiac sarcomeric mitochondrial creatine kinase are mediated by charged N-terminal residues.
    Khuchua ZA; Qin W; Boero J; Cheng J; Payne RM; Saks VA; Strauss AW
    J Biol Chem; 1998 Sep; 273(36):22990-6. PubMed ID: 9722522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergent enzyme kinetics and structural properties of the two human mitochondrial creatine kinase isoenzymes.
    Schlattner U; Eder M; Dolder M; Khuchua ZA; Strauss AW; Wallimann T
    Biol Chem; 2000 Nov; 381(11):1063-70. PubMed ID: 11154064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acyl chain composition determines cardiolipin clustering induced by mitochondrial creatine kinase binding to monolayers.
    Maniti O; Cheniour M; Lecompte MF; Marcillat O; Buchet R; Vial C; Granjon T
    Biochim Biophys Acta; 2011 Apr; 1808(4):1129-39. PubMed ID: 21256109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanism for functional interaction between DnaA protein and acidic phospholipids: identification of important amino acids.
    Makise M; Mima S; Tsuchiya T; Mizushima T
    J Biol Chem; 2001 Mar; 276(10):7450-6. PubMed ID: 11102450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial kinases and their molecular interaction with cardiolipin.
    Schlattner U; Tokarska-Schlattner M; Ramirez S; Brückner A; Kay L; Polge C; Epand RF; Lee RM; Lacombe ML; Epand RM
    Biochim Biophys Acta; 2009 Oct; 1788(10):2032-47. PubMed ID: 19409873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separate nuclear genes encode sarcomere-specific and ubiquitous human mitochondrial creatine kinase isoenzymes.
    Haas RC; Strauss AW
    J Biol Chem; 1990 Apr; 265(12):6921-7. PubMed ID: 2324105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoenzyme-specific interaction of muscle-type creatine kinase with the sarcomeric M-line is mediated by NH(2)-terminal lysine charge-clamps.
    Hornemann T; Stolz M; Wallimann T
    J Cell Biol; 2000 Jun; 149(6):1225-34. PubMed ID: 10851020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of proteolipid domain formation in an inner mitochondrial membrane mimicking model.
    Cheniour M; Brewer J; Bagatolli L; Marcillat O; Granjon T
    Biochim Biophys Acta Gen Subj; 2017 May; 1861(5 Pt A):969-976. PubMed ID: 28185927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural characterization and tissue-specific expression of the mRNAs encoding isoenzymes from two rat mitochondrial creatine kinase genes.
    Payne RM; Haas RC; Strauss AW
    Biochim Biophys Acta; 1991 Jul; 1089(3):352-61. PubMed ID: 1859839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane-binding and lipid vesicle cross-linking kinetics of the mitochondrial creatine kinase octamer.
    Stachowiak O; Dolder M; Wallimann T
    Biochemistry; 1996 Dec; 35(48):15522-8. PubMed ID: 8952506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Over-expression, purification and characterization of the oligomerization dynamics of an invertebrate mitochondrial creatine kinase.
    Hoffman GG; Ellington WR
    Biochim Biophys Acta; 2005 Aug; 1751(2):184-93. PubMed ID: 15975860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial Proteolipid Complexes of Creatine Kinase.
    Schlattner U; Kay L; Tokarska-Schlattner M
    Subcell Biochem; 2018; 87():365-408. PubMed ID: 29464567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel lipid transfer property of two mitochondrial proteins that bridge the inner and outer membranes.
    Epand RF; Schlattner U; Wallimann T; Lacombe ML; Epand RM
    Biophys J; 2007 Jan; 92(1):126-37. PubMed ID: 17028143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial creatine kinase and mitochondrial outer membrane porin show a direct interaction that is modulated by calcium.
    Schlattner U; Dolder M; Wallimann T; Tokarska-Schlattner M
    J Biol Chem; 2001 Dec; 276(51):48027-30. PubMed ID: 11602586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.