BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 15044465)

  • 1. Overexpression of HER2 (erbB2) in human breast epithelial cells unmasks transforming growth factor beta-induced cell motility.
    Ueda Y; Wang S; Dumont N; Yi JY; Koh Y; Arteaga CL
    J Biol Chem; 2004 Jun; 279(23):24505-13. PubMed ID: 15044465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transforming growth factor-beta (TGF-beta) type I receptor/ALK5-dependent activation of the GADD45beta gene mediates the induction of biglycan expression by TGF-beta.
    Ungefroren H; Groth S; Ruhnke M; Kalthoff H; Fändrich F
    J Biol Chem; 2005 Jan; 280(4):2644-52. PubMed ID: 15546867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transforming growth factor beta engages TACE and ErbB3 to activate phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing breast cancer and desensitizes cells to trastuzumab.
    Wang SE; Xiang B; Guix M; Olivares MG; Parker J; Chung CH; Pandiella A; Arteaga CL
    Mol Cell Biol; 2008 Sep; 28(18):5605-20. PubMed ID: 18625725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542.
    Laping NJ; Grygielko E; Mathur A; Butter S; Bomberger J; Tweed C; Martin W; Fornwald J; Lehr R; Harling J; Gaster L; Callahan JF; Olson BA
    Mol Pharmacol; 2002 Jul; 62(1):58-64. PubMed ID: 12065755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity.
    Bhowmick NA; Zent R; Ghiassi M; McDonnell M; Moses HL
    J Biol Chem; 2001 Dec; 276(50):46707-13. PubMed ID: 11590169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signaling through the Smad pathway by insulin-like growth factor-binding protein-3 in breast cancer cells. Relationship to transforming growth factor-beta 1 signaling.
    Fanayan S; Firth SM; Baxter RC
    J Biol Chem; 2002 Mar; 277(9):7255-61. PubMed ID: 11751851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EW-7203, a novel small molecule inhibitor of transforming growth factor-β (TGF-β) type I receptor/activin receptor-like kinase-5, blocks TGF-β1-mediated epithelial-to-mesenchymal transition in mammary epithelial cells.
    Park CY; Kim DK; Sheen YY
    Cancer Sci; 2011 Oct; 102(10):1889-96. PubMed ID: 21707864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insulin-like growth factor-I inhibits transcriptional responses of transforming growth factor-beta by phosphatidylinositol 3-kinase/Akt-dependent suppression of the activation of Smad3 but not Smad2.
    Song K; Cornelius SC; Reiss M; Danielpour D
    J Biol Chem; 2003 Oct; 278(40):38342-51. PubMed ID: 12876289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting endogenous transforming growth factor beta receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1.
    Subramanian G; Schwarz RE; Higgins L; McEnroe G; Chakravarty S; Dugar S; Reiss M
    Cancer Res; 2004 Aug; 64(15):5200-11. PubMed ID: 15289325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-talk between the p42/p44 MAP kinase and Smad pathways in transforming growth factor beta 1-induced furin gene transactivation.
    Blanchette F; Rivard N; Rudd P; Grondin F; Attisano L; Dubois CM
    J Biol Chem; 2001 Sep; 276(36):33986-94. PubMed ID: 11448947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HER2/Neu (ErbB2) signaling to Rac1-Pak1 is temporally and spatially modulated by transforming growth factor beta.
    Wang SE; Shin I; Wu FY; Friedman DB; Arteaga CL
    Cancer Res; 2006 Oct; 66(19):9591-600. PubMed ID: 17018616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autocrine transforming growth factor-beta signaling mediates Smad-independent motility in human cancer cells.
    Dumont N; Bakin AV; Arteaga CL
    J Biol Chem; 2003 Jan; 278(5):3275-85. PubMed ID: 12421823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional cross-talk between Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-beta-induced aggrecan gene expression in chondrogenic ATDC5 cells.
    Watanabe H; de Caestecker MP; Yamada Y
    J Biol Chem; 2001 Apr; 276(17):14466-73. PubMed ID: 11278290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth inhibition by insulin-like growth factor-binding protein-3 in T47D breast cancer cells requires transforming growth factor-beta (TGF-beta ) and the type II TGF-beta receptor.
    Fanayan S; Firth SM; Butt AJ; Baxter RC
    J Biol Chem; 2000 Dec; 275(50):39146-51. PubMed ID: 10993898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restoration of transforming growth factor-beta signaling through receptor RI induction by histone deacetylase activity inhibition in breast cancer cells.
    Ammanamanchi S; Brattain MG
    J Biol Chem; 2004 Jul; 279(31):32620-5. PubMed ID: 15155736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of ErbB2 receptor inhibits IGF-I-induced Shc-MAPK signaling pathway in breast cancer cells.
    Lu Y; Zi X; Zhao Y; Pollak M
    Biochem Biophys Res Commun; 2004 Jan; 313(3):709-15. PubMed ID: 14697248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA.
    Edlund S; Landström M; Heldin CH; Aspenström P
    Mol Biol Cell; 2002 Mar; 13(3):902-14. PubMed ID: 11907271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adhesion and Rac1-dependent regulation of biglycan gene expression by transforming growth factor-beta. Evidence for oxidative signaling through NADPH oxidase.
    Groth S; Schulze M; Kalthoff H; Fändrich F; Ungefroren H
    J Biol Chem; 2005 Sep; 280(39):33190-9. PubMed ID: 16051607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Down-regulation of FXYD3 is induced by transforming growth factor-β signaling via ZEB1/δEF1 in human mammary epithelial cells.
    Yamamoto H; Mukaisho K; Sugihara H; Hattori T; Asano S
    Biol Pharm Bull; 2011; 34(3):324-9. PubMed ID: 21372379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HER-2 overexpression differentially alters transforming growth factor-beta responses in luminal versus mesenchymal human breast cancer cells.
    Wilson CA; Cajulis EE; Green JL; Olsen TM; Chung YA; Damore MA; Dering J; Calzone FJ; Slamon DJ
    Breast Cancer Res; 2005; 7(6):R1058-79. PubMed ID: 16457687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.