These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 15044517)

  • 1. Differential temporal coding of rhythmically diverse acoustic signals by a single interneuron.
    Marsat G; Pollack GS
    J Neurophysiol; 2004 Aug; 92(2):939-48. PubMed ID: 15044517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal coding by populations of auditory receptor neurons.
    Sabourin P; Pollack GS
    J Neurophysiol; 2010 Mar; 103(3):1614-21. PubMed ID: 20071632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carrier-dependent temporal processing in an auditory interneuron.
    Sabourin P; Gottlieb H; Pollack GS
    J Acoust Soc Am; 2008 May; 123(5):2910-7. PubMed ID: 18529207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identified auditory neurons in the cricket Gryllus rubens: temporal processing in calling song sensitive units.
    Farris HE; Mason AC; Hoy RR
    Hear Res; 2004 Jul; 193(1-2):121-33. PubMed ID: 15219327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behaviorally relevant burst coding in primary sensory neurons.
    Sabourin P; Pollack GS
    J Neurophysiol; 2009 Aug; 102(2):1086-91. PubMed ID: 19515952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of inhibitory timing on contrast enhancement in auditory circuits in crickets (Teleogryllus oceanicus).
    Faulkes Z; Pollack GS
    J Neurophysiol; 2000 Sep; 84(3):1247-55. PubMed ID: 10979999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A corollary discharge mechanism modulates central auditory processing in singing crickets.
    Poulet JF; Hedwig B
    J Neurophysiol; 2003 Mar; 89(3):1528-40. PubMed ID: 12626626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system.
    Nabatiyan A; Poulet JF; de Polavieja GG; Hedwig B
    J Neurophysiol; 2003 Oct; 90(4):2484-93. PubMed ID: 14534273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency processing at consecutive levels in the auditory system of bush crickets (tettigoniidae).
    Ostrowski TD; Stumpner A
    J Comp Neurol; 2010 Aug; 518(15):3101-16. PubMed ID: 20533362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of frequency-specific responses of omega neuron 1 in crickets (Teleogryllus oceanicus): a polysynaptic pathway for song?
    Faulkes Z; Pollack GS
    J Exp Biol; 2001 Apr; 204(Pt 7):1295-305. PubMed ID: 11249839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the temporal pattern of contralateral inhibition on sound localization cues.
    Marsat G; Pollack GS
    J Neurosci; 2005 Jun; 25(26):6137-44. PubMed ID: 15987943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hearing in mole crickets (Orthoptera: Gryllotalpidae) at sonic and ultrasonic frequencies.
    Mason AC; Forrest TG; Hoy RR
    J Exp Biol; 1998 Jun; 201(Pt 12):1967-79. PubMed ID: 9722432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal and directional processing by an identified interneuron, ON1, compared in cricket species that sing with different tempos.
    Tunstall DN; Pollack GS
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Apr; 191(4):363-72. PubMed ID: 15668779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encoding of sound localization cues by an identified auditory interneuron: effects of stimulus temporal pattern.
    Samson AH; Pollack GS
    J Neurophysiol; 2002 Nov; 88(5):2322-8. PubMed ID: 12424273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic amplitude coding in the auditory cortex of awake rhesus macaques.
    Malone BJ; Scott BH; Semple MN
    J Neurophysiol; 2007 Sep; 98(3):1451-74. PubMed ID: 17615123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auditory discrimination of amplitude modulations based on metric distances of spike trains.
    Wohlgemuth S; Ronacher B
    J Neurophysiol; 2007 Apr; 97(4):3082-92. PubMed ID: 17314239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The medial nucleus of the trapezoid body in rat: spectral and temporal properties vary with anatomical location of the units.
    Tolnai S; Hernandez O; Englitz B; Rübsamen R; Malmierca MS
    Eur J Neurosci; 2008 May; 27(10):2587-98. PubMed ID: 18547245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central projections of auditory receptor neurons of crickets.
    Imaizumi K; Pollack GS
    J Comp Neurol; 2005 Dec; 493(3):439-47. PubMed ID: 16261528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation detection for amplitude-modulated bone-conducted sounds with sinusoidal carriers in the high- and ultrasonic-frequency range.
    Hotehama T; Nakagawa S
    J Acoust Soc Am; 2010 Nov; 128(5):3011-8. PubMed ID: 21110596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Coding of the acoustic information in the superior auditory centers].
    De Ribaupierre F
    Bull Schweiz Akad Med Wiss; 1976 Jul; 32(1-3):29-39. PubMed ID: 990578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.