BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

646 related articles for article (PubMed ID: 15044539)

  • 1. Netrin-1 and semaphorin 3A promote or inhibit cortical axon branching, respectively, by reorganization of the cytoskeleton.
    Dent EW; Barnes AM; Tang F; Kalil K
    J Neurosci; 2004 Mar; 24(12):3002-12. PubMed ID: 15044539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Netrin-1 induces axon branching in developing cortical neurons by frequency-dependent calcium signaling pathways.
    Tang F; Kalil K
    J Neurosci; 2005 Jul; 25(28):6702-15. PubMed ID: 16014732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axon branching requires interactions between dynamic microtubules and actin filaments.
    Dent EW; Kalil K
    J Neurosci; 2001 Dec; 21(24):9757-69. PubMed ID: 11739584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction.
    Gallo G
    J Cell Sci; 2006 Aug; 119(Pt 16):3413-23. PubMed ID: 16899819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fibroblast growth factor-2 promotes axon branching of cortical neurons by influencing morphology and behavior of the primary growth cone.
    Szebenyi G; Dent EW; Callaway JL; Seys C; Lueth H; Kalil K
    J Neurosci; 2001 Jun; 21(11):3932-41. PubMed ID: 11356881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones.
    Biswas S; Kalil K
    J Neurosci; 2018 Jan; 38(2):291-307. PubMed ID: 29167405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordinated interaction of Down syndrome cell adhesion molecule and deleted in colorectal cancer with dynamic TUBB3 mediates Netrin-1-induced axon branching.
    Huang H; Shao Q; Qu C; Yang T; Dwyer T; Liu G
    Neuroscience; 2015 May; 293():109-22. PubMed ID: 25754961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncoupling of UNC5C with Polymerized TUBB3 in Microtubules Mediates Netrin-1 Repulsion.
    Shao Q; Yang T; Huang H; Alarmanazi F; Liu G
    J Neurosci; 2017 Jun; 37(23):5620-5633. PubMed ID: 28483977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of collapsing factors on F-actin content and microtubule distribution of Helisoma growth cones.
    Torreano PJ; Waterman-Storer CM; Cohan CS
    Cell Motil Cytoskeleton; 2005 Mar; 60(3):166-79. PubMed ID: 15700278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth cone turning induced by direct local modification of microtubule dynamics.
    Buck KB; Zheng JQ
    J Neurosci; 2002 Nov; 22(21):9358-67. PubMed ID: 12417661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential outgrowth of axons and their branches is regulated by localized calcium transients.
    Hutchins BI; Kalil K
    J Neurosci; 2008 Jan; 28(1):143-53. PubMed ID: 18171932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Netrin-1-induced local β-actin synthesis and growth cone guidance requires zipcode binding protein 1.
    Welshhans K; Bassell GJ
    J Neurosci; 2011 Jul; 31(27):9800-13. PubMed ID: 21734271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Netrin-1 elevates the level and induces cluster formation of its receptor DCC at the surface of cortical axon shafts in an exocytosis-dependent manner.
    Matsumoto H; Nagashima M
    Neurosci Res; 2010 Jun; 67(2):99-107. PubMed ID: 20170691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Common mechanisms underlying growth cone guidance and axon branching.
    Kalil K; Szebenyi G; Dent EW
    J Neurobiol; 2000 Aug; 44(2):145-58. PubMed ID: 10934318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The activation of ezrin-radixin-moesin proteins is regulated by netrin-1 through Src kinase and RhoA/Rho kinase activities and mediates netrin-1-induced axon outgrowth.
    Antoine-Bertrand J; Ghogha A; Luangrath V; Bedford FK; Lamarche-Vane N
    Mol Biol Cell; 2011 Oct; 22(19):3734-46. PubMed ID: 21849478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1.
    Lebrand C; Dent EW; Strasser GA; Lanier LM; Krause M; Svitkina TM; Borisy GG; Gertler FB
    Neuron; 2004 Apr; 42(1):37-49. PubMed ID: 15066263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semaphorin 3A inhibits ERM protein phosphorylation in growth cone filopodia through inactivation of PI3K.
    Gallo G
    Dev Neurobiol; 2008 Jun; 68(7):926-33. PubMed ID: 18327764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic responses of Xenopus retinal ganglion cell axon growth cones to netrin-1 as they innervate their in vivo target.
    Shirkey NJ; Manitt C; Zuniga L; Cohen-Cory S
    Dev Neurobiol; 2012 Apr; 72(4):628-48. PubMed ID: 21858928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Semaphorin-Induced Growth Cone Collapse and Axon Growth Inhibition.
    Meyer LA; Kaselis A; Satkauskas S; Bagnard D
    Methods Mol Biol; 2017; 1493():171-183. PubMed ID: 27787850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Less than 5 Netrin-1 molecules initiate attraction but 200 Sema3A molecules are necessary for repulsion.
    Pinato G; Cojoc D; Lien LT; Ansuini A; Ban J; D'Este E; Torre V
    Sci Rep; 2012; 2():675. PubMed ID: 22997549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.