These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 15044723)

  • 1. Orientational potentials extracted from protein structures improve native fold recognition.
    Buchete NV; Straub JE; Thirumalai D
    Protein Sci; 2004 Apr; 13(4):862-74. PubMed ID: 15044723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous anisotropic representation of coarse-grained potentials for proteins by spherical harmonics synthesis.
    Buchete NV; Straub JE; Thirumalai D
    J Mol Graph Model; 2004 May; 22(5):441-50. PubMed ID: 15099839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An accurate, residue-level, pair potential of mean force for folding and binding based on the distance-scaled, ideal-gas reference state.
    Zhang C; Liu S; Zhou H; Zhou Y
    Protein Sci; 2004 Feb; 13(2):400-11. PubMed ID: 14739325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coarse-grained protein model with residue orientation energies derived from atomic force fields.
    Betancourt MR
    J Phys Chem B; 2009 Nov; 113(44):14824-30. PubMed ID: 19817469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the role of the topology in protein folding by computational inverse folding experiments.
    Mucherino A; Costantini S; di Serafino D; D'Apuzzo M; Facchiano A; Colonna G
    Comput Biol Chem; 2008 Aug; 32(4):233-9. PubMed ID: 18479970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning effective amino acid interactions through iterative stochastic techniques.
    Micheletti C; Seno F; Banavar JR; Maritan A
    Proteins; 2001 Feb; 42(3):422-31. PubMed ID: 11151013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A reduced protein model with accurate native-structure identification ability.
    Betancourt MR
    Proteins; 2003 Dec; 53(4):889-907. PubMed ID: 14635131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding 19 proteins to their native state and stability of large proteins from a coarse-grained model.
    Kapoor A; Travesset A
    Proteins; 2014 Mar; 82(3):505-16. PubMed ID: 24115081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A consistent set of statistical potentials for quantifying local side-chain and backbone interactions.
    Fang Q; Shortle D
    Proteins; 2005 Jul; 60(1):90-6. PubMed ID: 15852305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy minimizations with a combination of two knowledge-based potentials for protein folding.
    de Sancho D; Rey A
    J Comput Chem; 2008 Jul; 29(10):1684-92. PubMed ID: 18351603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a rotamer library for coarse-grained models in protein-folding simulations.
    Larriva M; Rey A
    J Chem Inf Model; 2014 Jan; 54(1):302-13. PubMed ID: 24354725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel knowledge-based mean force potential at atomic level.
    Melo F; Feytmans E
    J Mol Biol; 1997 Mar; 267(1):207-22. PubMed ID: 9096219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explicit orientation dependence in empirical potentials and its significance to side-chain modeling.
    Ma J
    Acc Chem Res; 2009 Aug; 42(8):1087-96. PubMed ID: 19445451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scoring predictive models using a reduced representation of proteins: model and energy definition.
    Fogolari F; Pieri L; Dovier A; Bortolussi L; Giugliarelli G; Corazza A; Esposito G; Viglino P
    BMC Struct Biol; 2007 Mar; 7():15. PubMed ID: 17378941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of side-chain-rotamer and side-chain and backbone virtual-bond-stretching potentials of mean force from AM1 energy surfaces of terminally-blocked amino-acid residues, for coarse-grained simulations of protein structure and folding. II. Results, comparison with statistical potentials, and implementation in the UNRES force field.
    Kozłowska U; Maisuradze GG; Liwo A; Scheraga HA
    J Comput Chem; 2010 Apr; 31(6):1154-67. PubMed ID: 20017135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide models XLV: conformational properties of N-formyl-L-methioninamide and its relevance to methionine in proteins.
    Láng A; Csizmadia IG; Perczel A
    Proteins; 2005 Feb; 58(3):571-88. PubMed ID: 15616985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lessons from the design of a novel atomic potential for protein folding.
    Chen WW; Shakhnovich EI
    Protein Sci; 2005 Jul; 14(7):1741-52. PubMed ID: 15987903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of short-range interactions as secondary structure energies for protein fold and sequence recognition.
    Miyazawa S; Jernigan RL
    Proteins; 1999 Aug; 36(3):347-56. PubMed ID: 10409828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognizing native folds by the arrangement of hydrophobic and polar residues.
    Huang ES; Subbiah S; Levitt M
    J Mol Biol; 1995 Oct; 252(5):709-20. PubMed ID: 7563083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the design and analysis of protein folding potentials.
    Tobi D; Shafran G; Linial N; Elber R
    Proteins; 2000 Jul; 40(1):71-85. PubMed ID: 10813832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.