BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

697 related articles for article (PubMed ID: 15044840)

  • 21. Antagonistic forces generated by cytoplasmic dynein and myosin-II during growth cone turning and axonal retraction.
    Myers KA; Tint I; Nadar CV; He Y; Black MM; Baas PW
    Traffic; 2006 Oct; 7(10):1333-51. PubMed ID: 16911591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brain-derived neurotrophic factor signalling in adult pig retinal ganglion cell neurite regeneration in vitro.
    Bonnet D; Garcia M; Vecino E; Lorentz JG; Sahel J; Hicks D
    Brain Res; 2004 May; 1007(1-2):142-51. PubMed ID: 15064145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GAP43 phosphorylation is critical for growth and branching of retinotectal arbors in zebrafish.
    Leu B; Koch E; Schmidt JT
    Dev Neurobiol; 2010 Nov; 70(13):897-911. PubMed ID: 20669323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Signalling mechanisms regulating axonal branching in vivo.
    Schmidt H; Rathjen FG
    Bioessays; 2010 Nov; 32(11):977-85. PubMed ID: 20827677
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfilament and microtubule organization and dynamics in process extension by central glia-4 oligodendrocytes: evidence for a microtubule organizing center.
    Rumsby M; Afsari F; Stark M; Hughson E
    Glia; 2003 Apr; 42(2):118-29. PubMed ID: 12655596
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Myosin light chain phosphorylation and growth cone motility.
    Schmidt JT; Morgan P; Dowell N; Leu B
    J Neurobiol; 2002 Sep; 52(3):175-88. PubMed ID: 12210102
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The importance of transgene and cell type on the regeneration of adult retinal ganglion cell axons within reconstituted bridging grafts.
    Hu Y; Arulpragasam A; Plant GW; Hendriks WT; Cui Q; Harvey AR
    Exp Neurol; 2007 Oct; 207(2):314-28. PubMed ID: 17689533
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microtubule and Rac 1-dependent F-actin in growth cones.
    Grabham PW; Reznik B; Goldberg DJ
    J Cell Sci; 2003 Sep; 116(Pt 18):3739-48. PubMed ID: 12890754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transformation of adult retina from the regenerative to the axonogenesis state activates specific genes in various subsets of neurons and glial cells.
    Liedtke T; Naskar R; Eisenacher M; Thanos S
    Glia; 2007 Jan; 55(2):189-201. PubMed ID: 17078023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optic nerve and vitreal inflammation are both RGC neuroprotective but only the latter is RGC axogenic.
    Ahmed Z; Aslam M; Lorber B; Suggate EL; Berry M; Logan A
    Neurobiol Dis; 2010 Feb; 37(2):441-54. PubMed ID: 19900554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons.
    Bomze HM; Bulsara KR; Iskandar BJ; Caroni P; Skene JH
    Nat Neurosci; 2001 Jan; 4(1):38-43. PubMed ID: 11135643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On-line confocal imaging of the events leading to structural dedifferentiation of an axonal segment into a growth cone after axotomy.
    Sahly I; Khoutorsky A; Erez H; Prager-Khoutorsky M; Spira ME
    J Comp Neurol; 2006 Feb; 494(5):705-20. PubMed ID: 16374810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cellular dynamics underlying regeneration of damaged axons differs from initial axon development.
    Blizzard CA; Haas MA; Vickers JC; Dickson TC
    Eur J Neurosci; 2007 Sep; 26(5):1100-8. PubMed ID: 17767489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Endogenous BDNF regulates induction of intrinsic neuronal growth programs in injured sensory neurons.
    Geremia NM; Pettersson LM; Hasmatali JC; Hryciw T; Danielsen N; Schreyer DJ; Verge VM
    Exp Neurol; 2010 May; 223(1):128-42. PubMed ID: 19646438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Axonal regeneration in the organotypically cultured monkey retina: biological aspects, dependence on substrates and age-related proteomic profiling.
    Rose K; Schröer U; Volk GF; Schlatt S; König S; Feigenspan A; Thanos S
    Restor Neurol Neurosci; 2008; 26(4-5):249-66. PubMed ID: 18997304
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Axon regeneration in the absence of growth cones: acceleration by cyclic AMP.
    Jin LQ; Zhang G; Jamison C; Takano H; Haydon PG; Selzer ME
    J Comp Neurol; 2009 Jul; 515(3):295-312. PubMed ID: 19425080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EGCG stabilizes growth cone filopodia and impairs retinal ganglion cell axon guidance.
    Atkinson-Leadbeater K; Hehr CL; Johnston J; Bertolesi G; McFarlane S
    Dev Dyn; 2016 Jun; 245(6):667-77. PubMed ID: 27005305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Eye drop delivery of pigment epithelium-derived factor-34 promotes retinal ganglion cell neuroprotection and axon regeneration.
    Vigneswara V; Esmaeili M; Deer L; Berry M; Logan A; Ahmed Z
    Mol Cell Neurosci; 2015 Sep; 68():212-21. PubMed ID: 26260110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Developmental regulation of sensory axon regeneration in the absence of growth cones.
    Jones SL; Selzer ME; Gallo G
    J Neurobiol; 2006 Dec; 66(14):1630-45. PubMed ID: 17058187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Brain-derived neurotrophic factor differentially regulates retinal ganglion cell dendritic and axonal arborization in vivo.
    Lom B; Cohen-Cory S
    J Neurosci; 1999 Nov; 19(22):9928-38. PubMed ID: 10559401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.