BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 15044967)

  • 1. The self-incompatibility response in Papaver rhoeas pollen causes early and striking alterations to organelles.
    Geitmann A; Franklin-Tong VE; Emons AC
    Cell Death Differ; 2004 Aug; 11(8):812-22. PubMed ID: 15044967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteins implicated in mediating self-incompatibility-induced alterations to the actin cytoskeleton of Papaver pollen.
    Poulter NS; Bosch M; Franklin-Tong VE
    Ann Bot; 2011 Sep; 108(4):659-75. PubMed ID: 21320881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in the actin cytoskeleton of pollen tubes are induced by the self-incompatibility reaction in Papaver rhoeas.
    Geitmann A; Snowman BN; Emons AM; Franklin-Tong VE
    Plant Cell; 2000 Jul; 12(7):1239-51. PubMed ID: 10899987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubules are a target for self-incompatibility signaling in Papaver pollen.
    Poulter NS; Vatovec S; Franklin-Tong VE
    Plant Physiol; 2008 Mar; 146(3):1358-67. PubMed ID: 18192439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ectopic Expression of a Self-Incompatibility Module Triggers Growth Arrest and Cell Death in Vegetative Cells.
    Lin Z; Xie F; Triviño M; Karimi M; Bosch M; Franklin-Tong VE; Nowack MK
    Plant Physiol; 2020 Aug; 183(4):1765-1779. PubMed ID: 32561539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytomechanical properties of papaver pollen tubes are altered after self-incompatibility challenge.
    Geitmann A; McConnaughey W; Lang-Pauluzzi I; Franklin-Tong VE; Emons AM
    Biophys J; 2004 May; 86(5):3314-23. PubMed ID: 15111444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disorder of Golgi Apparatus Precedes Anoxia-Induced Pathology of Mitochondria.
    Morozov YM; Rakic P
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perspective - ultrastructural analyses reflect the effects of sleep and sleep loss on neuronal cell biology.
    Wang L; Aton SJ
    Sleep; 2022 May; 45(5):. PubMed ID: 35554582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructural changes accompanying mitosporogenesis in Ectocarpus parvus.
    Lofthouse PF; Capon B
    Protoplasma; 1975; 84(1-2):83-99. PubMed ID: 166415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depletion plays a pivotal role in self-incompatibility, revealing a link between cellular energy status, cytosolic acidification and actin remodelling in pollen tubes.
    Wang L; Lin Z; Carli J; Gladala-Kostarz A; Davies JM; Franklin-Tong VE; Bosch M
    New Phytol; 2022 Dec; 236(5):1691-1707. PubMed ID: 35775998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissection and ultramicroscopic observation of an apical pollen tube of Pyrus.
    Shi C; Wang D; Guan Y; Qu H
    Plant Reprod; 2022 Mar; 35(1):1-8. PubMed ID: 34731307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two Self-Incompatibility Sites Occur Simultaneously in the Same
    Duarte MO; Oliveira DMT; Borba EL
    Plants (Basel); 2020 Dec; 9(12):. PubMed ID: 33322562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-Seq analysis of compatible and incompatible styles of Pyrus species at the beginning of pollination.
    Li K; Wang Y; Qu H
    Plant Mol Biol; 2020 Feb; 102(3):287-306. PubMed ID: 31872308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A gamma-thionin protein from apple, MdD1, is required for defence against S-RNase-induced inhibition of pollen tube prior to self/non-self recognition.
    Gu Z; Li W; Doughty J; Meng D; Yang Q; Yuan H; Li Y; Chen Q; Yu J; Liu CS; Li T
    Plant Biotechnol J; 2019 Nov; 17(11):2184-2198. PubMed ID: 31001872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-incompatibility in Papaver pollen: programmed cell death in an acidic environment.
    Wang L; Lin Z; Triviño M; Nowack MK; Franklin-Tong VE; Bosch M
    J Exp Bot; 2019 Apr; 70(7):2113-2123. PubMed ID: 30481323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xylogenesis in zinnia (Zinnia elegans) cell cultures: unravelling the regulatory steps in a complex developmental programmed cell death event.
    Iakimova ET; Woltering EJ
    Planta; 2017 Apr; 245(4):681-705. PubMed ID: 28194564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protease signaling in animal and plant-regulated cell death.
    Salvesen GS; Hempel A; Coll NS
    FEBS J; 2016 Jul; 283(14):2577-98. PubMed ID: 26648190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmed cell death in kiwifruit stigmatic arms and its relationship to the effective pollination period and the progamic phase.
    Ferradás Y; López M; Rey M; González MV
    Ann Bot; 2014 Jul; 114(1):35-45. PubMed ID: 24782437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disorganization of F-actin cytoskeleton precedes vacuolar disruption in pollen tubes during the in vivo self-incompatibility response in Nicotiana alata.
    Roldán JA; Rojas HJ; Goldraij A
    Ann Bot; 2012 Sep; 110(4):787-95. PubMed ID: 22782242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organisation and regulation of the cytoskeleton in plant programmed cell death.
    Smertenko A; Franklin-Tong VE
    Cell Death Differ; 2011 Aug; 18(8):1263-70. PubMed ID: 21566662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.