BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 15045486)

  • 21. Rod monochromacy and the coevolution of cetacean retinal opsins.
    Meredith RW; Gatesy J; Emerling CA; York VM; Springer MS
    PLoS Genet; 2013 Apr; 9(4):e1003432. PubMed ID: 23637615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inferred L/M cone opsin polymorphism of ancestral tarsiers sheds dim light on the origin of anthropoid primates.
    Melin AD; Matsushita Y; Moritz GL; Dominy NJ; Kawamura S
    Proc Biol Sci; 2013 May; 280(1759):20130189. PubMed ID: 23536597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hiding from the moonlight: luminosity and temperature affect activity of Asian nocturnal primates in a highly seasonal forest.
    Starr C; Nekaris KA; Leung L
    PLoS One; 2012; 7(4):e36396. PubMed ID: 22558461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Signaling by sensory receptors.
    Julius D; Nathans J
    Cold Spring Harb Perspect Biol; 2012 Jan; 4(1):a005991. PubMed ID: 22110046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The IgE gene in primates exhibits extraordinary evolutionary diversity.
    Wu PC; Chen JB; Kawamura S; Roos C; Merker S; Shih CC; Hsu BD; Lim C; Chang TW
    Immunogenetics; 2012 Apr; 64(4):279-87. PubMed ID: 22068888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments.
    Carvalho LS; Davies WL; Robinson PR; Hunt DM
    Proc Biol Sci; 2012 Jan; 279(1727):387-93. PubMed ID: 21697177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diversity of color vision: not all Australian marsupials are trichromatic.
    Ebeling W; Natoli RC; Hemmi JM
    PLoS One; 2010 Dec; 5(12):e14231. PubMed ID: 21151905
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution and spectral tuning of visual pigments in birds and mammals.
    Hunt DM; Carvalho LS; Cowing JA; Davies WL
    Philos Trans R Soc Lond B Biol Sci; 2009 Oct; 364(1531):2941-55. PubMed ID: 19720655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Absence of functional short-wavelength sensitive cone pigments in hamsters (Mesocricetus).
    Williams GA; Jacobs GH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 May; 194(5):429-39. PubMed ID: 18259758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional organization of temporal frequency selectivity in primate visual cortex.
    Khaytin I; Chen X; Royal DW; Ruiz O; Jermakowicz WJ; Siegel RM; Casagrande VA
    Cereb Cortex; 2008 Aug; 18(8):1828-42. PubMed ID: 18056699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Incongruence between genetic and morphological diversity in Microcebus griseorufus of Beza Mahafaly.
    Heckman KL; Rasoazanabary E; Machlin E; Godfrey LR; Yoder AD
    BMC Evol Biol; 2006 Nov; 6():98. PubMed ID: 17109740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoreceptors and photopigments in a subterranean rodent, the pocket gopher (Thomomys bottae).
    Williams GA; Calderone JB; Jacobs GH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Feb; 191(2):125-34. PubMed ID: 15711968
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence from opsin genes rejects nocturnality in ancestral primates.
    Tan Y; Yoder AD; Yamashita N; Li WH
    Proc Natl Acad Sci U S A; 2005 Oct; 102(41):14712-6. PubMed ID: 16192351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nocturnal light environments influence color vision and signatures of selection on the OPN1SW opsin gene in nocturnal lemurs.
    Veilleux CC; Louis EE; Bolnick DA
    Mol Biol Evol; 2013 Jun; 30(6):1420-37. PubMed ID: 23519316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cone visual pigments of aquatic mammals.
    Newman LA; Robinson PR
    Vis Neurosci; 2005; 22(6):873-9. PubMed ID: 16469194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision--a significant trend in the evolution of mammalian vision.
    Jacobs GH
    Vis Neurosci; 2013 Mar; 30(1-2):39-53. PubMed ID: 23286388
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of colour vision in vertebrates.
    Bowmaker JK
    Eye (Lond); 1998; 12 ( Pt 3b)():541-7. PubMed ID: 9775215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ancestral loss of short wave-sensitive cone visual pigment in lorisiform prosimians, contrasting with its strict conservation in other prosimians.
    Kawamura S; Kubotera N
    J Mol Evol; 2004 Mar; 58(3):314-21. PubMed ID: 15045486
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.