BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 15045490)

  • 1. New insights into the evolutionary history of type 1 rhodopsins.
    Ruiz-González MX; Marín I
    J Mol Evol; 2004 Mar; 58(3):348-58. PubMed ID: 15045490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial rhodopsins: functional versatility and genetic mobility.
    Sharma AK; Spudich JL; Doolittle WF
    Trends Microbiol; 2006 Nov; 14(11):463-9. PubMed ID: 17008099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Horizontal gene transfer and archaeal origin of deoxyhypusine synthase homologous genes in bacteria.
    Brochier C; López-García P; Moreira D
    Gene; 2004 Apr; 330():169-76. PubMed ID: 15087136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The presence of a haloarchaeal type tyrosyl-tRNA synthetase marks the opisthokonts as monophyletic.
    Huang J; Xu Y; Gogarten JP
    Mol Biol Evol; 2005 Nov; 22(11):2142-6. PubMed ID: 16049196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation.
    Ihara K; Umemura T; Katagiri I; Kitajima-Ihara T; Sugiyama Y; Kimura Y; Mukohata Y
    J Mol Biol; 1999 Jan; 285(1):163-74. PubMed ID: 9878396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of phylogenetic inconsistencies in the three domains of life.
    Soria-Carrasco V; Castresana J
    Mol Biol Evol; 2008 Nov; 25(11):2319-29. PubMed ID: 18701430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea.
    Mongodin EF; Nelson KE; Daugherty S; Deboy RT; Wister J; Khouri H; Weidman J; Walsh DA; Papke RT; Sanchez Perez G; Sharma AK; Nesbø CL; MacLeod D; Bapteste E; Doolittle WF; Charlebois RL; Legault B; Rodriguez-Valera F
    Proc Natl Acad Sci U S A; 2005 Dec; 102(50):18147-52. PubMed ID: 16330755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary patterns of retinal-binding pockets of type I rhodopsins and their functions.
    Adamian L; Ouyang Z; Tseng YY; Liang J
    Photochem Photobiol; 2006; 82(6):1426-35. PubMed ID: 16922602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.
    Oborník M; Green BR
    Mol Biol Evol; 2005 Dec; 22(12):2343-53. PubMed ID: 16093570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversification of NRT2 and the origin of its fungal homolog.
    Slot JC; Hallstrom KN; Matheny PB; Hibbett DS
    Mol Biol Evol; 2007 Aug; 24(8):1731-43. PubMed ID: 17513882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomes in flux: the evolution of archaeal and proteobacterial gene content.
    Snel B; Bork P; Huynen MA
    Genome Res; 2002 Jan; 12(1):17-25. PubMed ID: 11779827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The molecular evolution of catalatic hydroperoxidases: evidence for multiple lateral transfer of genes between prokaryota and from bacteria into eukaryota.
    Klotz MG; Loewen PC
    Mol Biol Evol; 2003 Jul; 20(7):1098-112. PubMed ID: 12777528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor.
    Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T
    Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of glutamate dehydrogenase genes: evidence for lateral gene transfer within and between prokaryotes and eukaryotes.
    Andersson JO; Roger AJ
    BMC Evol Biol; 2003 Jun; 3():14. PubMed ID: 12820901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea.
    Frigaard NU; Martinez A; Mincer TJ; DeLong EF
    Nature; 2006 Feb; 439(7078):847-50. PubMed ID: 16482157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic analysis of the triterpene cyclase protein family in prokaryotes and eukaryotes suggests bidirectional lateral gene transfer.
    Frickey T; Kannenberg E
    Environ Microbiol; 2009 May; 11(5):1224-41. PubMed ID: 19207562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification.
    Jones CM; Stres B; Rosenquist M; Hallin S
    Mol Biol Evol; 2008 Sep; 25(9):1955-66. PubMed ID: 18614527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea.
    Coombs JM; Barkay T
    Appl Environ Microbiol; 2005 Nov; 71(11):7083-91. PubMed ID: 16269744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acquisition of a bacterial RumA-type tRNA(uracil-54, C5)-methyltransferase by Archaea through an ancient horizontal gene transfer.
    Urbonavicius J; Auxilien S; Walbott H; Trachana K; Golinelli-Pimpaneau B; Brochier-Armanet C; Grosjean H
    Mol Microbiol; 2008 Jan; 67(2):323-35. PubMed ID: 18069966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions.
    Brown LS
    Photochem Photobiol Sci; 2004 Jun; 3(6):555-65. PubMed ID: 15170485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.