These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 15046367)

  • 1. Engineered polymeric nanoparticles for soil remediation.
    Tungittiplakorn W; Lion LW; Cohen C; Kim JY
    Environ Sci Technol; 2004 Mar; 38(5):1605-10. PubMed ID: 15046367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants.
    Tungittiplakorn W; Cohen C; Lion LW
    Environ Sci Technol; 2005 Mar; 39(5):1354-8. PubMed ID: 15787377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass transfer model of nanoparticle-facilitated contaminant transport in saturated porous media.
    Johari WL; Diamessis PJ; Lion LW
    Water Res; 2010 Feb; 44(4):1028-37. PubMed ID: 19406449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of phenanthrene between soil and an aqueous phase in the presence of anionic micelle-like amphiphilic polyurethane particles.
    Lee K; Choi HS; Kim JY; Ahn IS
    J Hazard Mater; 2003 Dec; 105(1-3):179-97. PubMed ID: 14623427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of amphiphilic polyurethane nanoparticles on sorption-desorption of phenanthrene in aquifer material.
    Kim JY; Shim SB; Shim JK
    J Hazard Mater; 2003 Mar; 98(1-3):145-60. PubMed ID: 12628783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of amphiphilic polyurethane nanoparticles to nonionic surfactants for flushing phenanthrene from soil.
    Kim JY; Shim SB; Shim JK
    J Hazard Mater; 2004 Dec; 116(3):205-12. PubMed ID: 15601613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel solubilization of phenanthrene using Winsor I microemulsion-based sodium castor oil sulfate.
    Zhao B; Zhu L; Gao Y
    J Hazard Mater; 2005 Mar; 119(1-3):205-11. PubMed ID: 15752867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Desorption of selected PAHs as individuals and as a ternary PAH mixture within a water-soil-nonionic surfactant system.
    Hussein TA; Ismail ZZ
    Environ Technol; 2013; 34(1-4):351-61. PubMed ID: 23530349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil.
    Saichek RE; Reddy KR
    Chemosphere; 2003 Apr; 51(4):273-87. PubMed ID: 12604079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Distribution patterns of PAHs in soils from coking plant and the particle-size cut points of soil washing].
    Li HL; Chen JJ; Wu W; Piao XS; Jiang L; Shi ZT; Sun TW
    Huan Jing Ke Xue; 2011 Apr; 32(4):1154-8. PubMed ID: 21717762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of polycyclic aromatic hydrocarbons from manufactured gas plant-contaminated soils using sunflower oil: laboratory column experiments.
    Gong Z; Wilke BM; Alef K; Li P; Zhou Q
    Chemosphere; 2006 Feb; 62(5):780-7. PubMed ID: 15982705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle-supported lipid bilayers as an in situ remediation strategy for hydrophobic organic contaminants in soils.
    Wang H; Kim B; Wunder SL
    Environ Sci Technol; 2015 Jan; 49(1):529-36. PubMed ID: 25454259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of system variables on surfactant enhanced electrokinetic removal of polycyclic aromatic hydrocarbons from clayey soils.
    Saichek RE; Reddy KR
    Environ Technol; 2003 Apr; 24(4):503-15. PubMed ID: 12755451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of chemical oxidation on sorption and desorption of PAHs in typical Chinese soils.
    Chen W; Hou L; Luo X; Zhu L
    Environ Pollut; 2009 Jun; 157(6):1894-903. PubMed ID: 19233529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined treatment of PAHs contaminated soils using the sequence extraction with surfactant-electrochemical degradation.
    Alcántara MT; Gómez J; Pazos M; Sanromán MA
    Chemosphere; 2008 Feb; 70(8):1438-44. PubMed ID: 17936331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remediation of phenanthrene from contaminated kaolinite by electroremediation-Fenton technology.
    Alcantara T; Pazos M; Gouveia S; Cameselle C; Sanroman MA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jul; 43(8):901-6. PubMed ID: 18569301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Calcination Remediation to Stabilize Heavy Metals and Simultaneously Remove Polycyclic Aromatic Hydrocarbons in Soil.
    Wang P; Hu X; He Q; Waigi MG; Wang J; Ling W
    Int J Environ Res Public Health; 2018 Aug; 15(8):. PubMed ID: 30104500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Desorption of polycyclic aromatic hydrocarbons in soils assisted by SPMD].
    Sun HW; Huo C; Wang CP
    Huan Jing Ke Xue; 2007 Aug; 28(8):1841-6. PubMed ID: 17926421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous organoclay composite for the sorption of polycyclic aromatic hydrocarbons and pentachlorophenol from groundwater.
    Ake CL; Wiles MC; Huebner HJ; McDonald TJ; Cosgriff D; Richardson MB; Donnelly KC; Phillips TD
    Chemosphere; 2003 Jun; 51(9):835-44. PubMed ID: 12697173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PAH contaminated soil remediation by reusing an aqueous solution of cyclodextrins.
    Petitgirard A; Djehiche M; Persello J; Fievet P; Fatin-Rouge N
    Chemosphere; 2009 May; 75(6):714-8. PubMed ID: 19251300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.