BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 15046604)

  • 1. Acute regulation of the tumour suppressor phosphatase, PTEN, by anionic lipids and reactive oxygen species.
    Downes CP; Walker S; McConnachie G; Lindsay Y; Batty IH; Leslie NR
    Biochem Soc Trans; 2004 Apr; 32(Pt 2):338-42. PubMed ID: 15046604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TPIP: a novel phosphoinositide 3-phosphatase.
    Walker SM; Downes CP; Leslie NR
    Biochem J; 2001 Dec; 360(Pt 2):277-83. PubMed ID: 11716755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antagonism of PI 3-kinase-dependent signalling pathways by the tumour suppressor protein, PTEN.
    Downes CP; Bennett D; McConnachie G; Leslie NR; Pass I; MacPhee C; Patel L; Gray A
    Biochem Soc Trans; 2001 Nov; 29(Pt 6):846-51. PubMed ID: 11709086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The tumour-suppressor function of PTEN requires an N-terminal lipid-binding motif.
    Walker SM; Leslie NR; Perera NM; Batty IH; Downes CP
    Biochem J; 2004 Apr; 379(Pt 2):301-7. PubMed ID: 14711368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motif analysis of the tumor suppressor gene MMAC/PTEN identifies tyrosines critical for tumor suppression and lipid phosphatase activity.
    Koul D; Jasser SA; Lu Y; Davies MA; Shen R; Shi Y; Mills GB; Yung WK
    Oncogene; 2002 Apr; 21(15):2357-64. PubMed ID: 11948419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The complexity of PTEN: mutation, marker and potential target for therapeutic intervention.
    Steelman LS; Bertrand FE; McCubrey JA
    Expert Opin Ther Targets; 2004 Dec; 8(6):537-50. PubMed ID: 15584861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting mutants of PTEN reveal distinct subsets of tumour suppressor functions.
    Leslie NR; Bennett D; Gray A; Pass I; Hoang-Xuan K; Downes CP
    Biochem J; 2001 Jul; 357(Pt 2):427-35. PubMed ID: 11439092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the cellular functions of PTEN using catalytic domain and C-terminal mutations: differential effects of C-terminal deletion on signalling pathways downstream of phosphoinositide 3-kinase.
    Leslie NR; Gray A; Pass I; Orchiston EA; Downes CP
    Biochem J; 2000 Mar; 346 Pt 3(Pt 3):827-33. PubMed ID: 10698713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The tumour suppressor PTEN: involvement of a tumour suppressor candidate protein in PTEN turnover.
    Maehama T; Okahara F; Kanaho Y
    Biochem Soc Trans; 2004 Apr; 32(Pt 2):343-7. PubMed ID: 15046605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial kinetic analysis of the tumour suppressor phosphatase, PTEN: evidence for activation by anionic phospholipids.
    McConnachie G; Pass I; Walker SM; Downes CP
    Biochem J; 2003 May; 371(Pt 3):947-55. PubMed ID: 12534371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PTEN: The down side of PI 3-kinase signalling.
    Leslie NR; Downes CP
    Cell Signal; 2002 Apr; 14(4):285-95. PubMed ID: 11858936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic switching of PI3K-dependent lipid signals.
    Downes CP; Leslie NR; Batty IH; van der Kaay J
    Biochem Soc Trans; 2007 Apr; 35(Pt 2):188-92. PubMed ID: 17371235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SHIP-2 and PTEN are expressed and active in vascular smooth muscle cell nuclei, but only SHIP-2 is associated with nuclear speckles.
    Déléris P; Bacqueville D; Gayral S; Carrez L; Salles JP; Perret B; Breton-Douillon M
    J Biol Chem; 2003 Oct; 278(40):38884-91. PubMed ID: 12847108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox regulation of PI 3-kinase signalling via inactivation of PTEN.
    Leslie NR; Bennett D; Lindsay YE; Stewart H; Gray A; Downes CP
    EMBO J; 2003 Oct; 22(20):5501-10. PubMed ID: 14532122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PTEN 2, a Golgi-associated testis-specific homologue of the PTEN tumor suppressor lipid phosphatase.
    Wu Y; Dowbenko D; Pisabarro MT; Dillard-Telm L; Koeppen H; Lasky LA
    J Biol Chem; 2001 Jun; 276(24):21745-53. PubMed ID: 11279206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the PTEN phosphatase.
    Gericke A; Munson M; Ross AH
    Gene; 2006 Jun; 374():1-9. PubMed ID: 16675164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of PTEN to specific PDZ domains contributes to PTEN protein stability and phosphorylation by microtubule-associated serine/threonine kinases.
    Valiente M; Andrés-Pons A; Gomar B; Torres J; Gil A; Tapparel C; Antonarakis SE; Pulido R
    J Biol Chem; 2005 Aug; 280(32):28936-43. PubMed ID: 15951562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of novel intracellular agonist responsive pools of phosphatidylinositol 3,4-bisphosphate using the TAPP1 pleckstrin homology domain in immunoelectron microscopy.
    Watt SA; Kimber WA; Fleming IN; Leslie NR; Downes CP; Lucocq JM
    Biochem J; 2004 Feb; 377(Pt 3):653-63. PubMed ID: 14604433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allosteric activation of PTEN phosphatase by phosphatidylinositol 4,5-bisphosphate.
    Campbell RB; Liu F; Ross AH
    J Biol Chem; 2003 Sep; 278(36):33617-20. PubMed ID: 12857747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association.
    Lee JO; Yang H; Georgescu MM; Di Cristofano A; Maehama T; Shi Y; Dixon JE; Pandolfi P; Pavletich NP
    Cell; 1999 Oct; 99(3):323-34. PubMed ID: 10555148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.