These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 15046724)

  • 1. Visual pigment phosphorylation but not transducin translocation can contribute to light adaptation in zebrafish cones.
    Kennedy MJ; Dunn FA; Hurley JB
    Neuron; 2004 Mar; 41(6):915-28. PubMed ID: 15046724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light stimulates a transducin-independent increase of cytoplasmic Ca2+ and suppression of current in cones from the zebrafish mutant nof.
    Brockerhoff SE; Rieke F; Matthews HR; Taylor MR; Kennedy B; Ankoudinova I; Niemi GA; Tucker CL; Xiao M; Cilluffo MC; Fain GL; Hurley JB
    J Neurosci; 2003 Jan; 23(2):470-80. PubMed ID: 12533607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DISCO! Dissociation of cone opsins: the fast and noisy life of cones explained.
    Travis GH
    Neuron; 2005 Jun; 46(6):840-2. PubMed ID: 15953411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation-independent suppression of light-activated visual pigment by arrestin in carp rods and cones.
    Tomizuka J; Tachibanaki S; Kawamura S
    J Biol Chem; 2015 Apr; 290(15):9399-411. PubMed ID: 25713141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phototransduction in mouse rods and cones.
    Fu Y; Yau KW
    Pflugers Arch; 2007 Aug; 454(5):805-19. PubMed ID: 17226052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of 11-cis 13-demethylretinal on phototransduction in bleach-adapted rod and cone photoreceptors.
    Corson DW; Kefalov VJ; Cornwall MC; Crouch RK
    J Gen Physiol; 2000 Aug; 116(2):283-97. PubMed ID: 10919871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light threshold-controlled cone alpha-transducin translocation.
    Chen J; Wu M; Sezate SA; McGinnis JF
    Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3350-5. PubMed ID: 17591908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in the pharmacological activation of visual opsins.
    Isayama T; Chen Y; Kono M; Degrip WJ; Ma JX; Crouch RK; Makino CL
    Vis Neurosci; 2006; 23(6):899-908. PubMed ID: 17266782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The visual cycle of the cone photoreceptors of the retina.
    Wolf G
    Nutr Rev; 2004 Jul; 62(7 Pt 1):283-6. PubMed ID: 15384919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoreceptor layer of salmonid fishes: transformation and loss of single cones in juvenile fish.
    Cheng CL; Flamarique IN; Hárosi FI; Rickers-Haunerland J; Haunerland NH
    J Comp Neurol; 2006 Mar; 495(2):213-35. PubMed ID: 16435286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Farnesylation of retinal transducin underlies its translocation during light adaptation.
    Kassai H; Aiba A; Nakao K; Nakamura K; Katsuki M; Xiong WH; Yau KW; Imai H; Shichida Y; Satomi Y; Takao T; Okano T; Fukada Y
    Neuron; 2005 Aug; 47(4):529-39. PubMed ID: 16102536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low activation and fast inactivation of transducin in carp cones.
    Tachibanaki S; Yonetsu S; Fukaya S; Koshitani Y; Kawamura S
    J Biol Chem; 2012 Nov; 287(49):41186-94. PubMed ID: 23045532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-dependent compartmentalization of transducin in rod photoreceptors.
    Artemyev NO
    Mol Neurobiol; 2008 Feb; 37(1):44-51. PubMed ID: 18425604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction.
    Zhang H; Huang W; Zhang H; Zhu X; Craft CM; Baehr W; Chen CK
    Mol Vis; 2003 Jun; 9():231-7. PubMed ID: 12802257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breaking the covalent bond--a pigment property that contributes to desensitization in cones.
    Kefalov VJ; Estevez ME; Kono M; Goletz PW; Crouch RK; Cornwall MC; Yau KW
    Neuron; 2005 Jun; 46(6):879-90. PubMed ID: 15953417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subunit dissociation and diffusion determine the subcellular localization of rod and cone transducins.
    Rosenzweig DH; Nair KS; Wei J; Wang Q; Garwin G; Saari JC; Chen CK; Smrcka AV; Swaroop A; Lem J; Hurley JB; Slepak VZ
    J Neurosci; 2007 May; 27(20):5484-94. PubMed ID: 17507570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly effective phosphorylation by G protein-coupled receptor kinase 7 of light-activated visual pigment in cones.
    Tachibanaki S; Arinobu D; Shimauchi-Matsukawa Y; Tsushima S; Kawamura S
    Proc Natl Acad Sci U S A; 2005 Jun; 102(26):9329-34. PubMed ID: 15958532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A visual pigment expressed in both rod and cone photoreceptors.
    Ma J; Znoiko S; Othersen KL; Ryan JC; Das J; Isayama T; Kono M; Oprian DD; Corson DW; Cornwall MC; Cameron DA; Harosi FI; Makino CL; Crouch RK
    Neuron; 2001 Nov; 32(3):451-61. PubMed ID: 11709156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blue light regenerates functional visual pigments in mammals through a retinyl-phospholipid intermediate.
    Kaylor JJ; Xu T; Ingram NT; Tsan A; Hakobyan H; Fain GL; Travis GH
    Nat Commun; 2017 May; 8(1):16. PubMed ID: 28473692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.