These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15046743)

  • 1. Comparative study of electron mediators used in the electrochemical oxidation of NADH.
    Prieto-Simón B; Fàbregas E
    Biosens Bioelectron; 2004 May; 19(10):1131-8. PubMed ID: 15046743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes.
    Zhu L; Zhai J; Yang R; Tian C; Guo L
    Biosens Bioelectron; 2007 May; 22(11):2768-73. PubMed ID: 17267199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of different mediator-modified screen-printed electrodes used in a flow system as amperometric sensors for NADH.
    Prieto-Simón B; Macanás J; Muñoz M; Fàbregas E
    Talanta; 2007 Mar; 71(5):2102-7. PubMed ID: 19071571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison between the use of a redox mediator in solution and of surface modified electrodes in the electrocatalytic oxidation of nicotinamide adenine dinucleotide.
    Antiochia R; Lavagnini I; Pastore P; Magno F
    Bioelectrochemistry; 2004 Sep; 64(2):157-63. PubMed ID: 15296789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of Meldola's blue/zinc oxide hybrid electrodes for efficient detection of the reduced form of nicotinamide adenine dinucleotide at low potential.
    Kumar SA; Chen SM
    Anal Chim Acta; 2007 May; 592(1):36-44. PubMed ID: 17499068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer modified electrodes for the reversible oxidation-reduction of NAD+/NADH for use within amperometric biosensors.
    Warrington RJ; Higson SP
    Biomed Sci Instrum; 2001; 37():75-80. PubMed ID: 11347449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme-modified nanoporous gold-based electrochemical biosensors.
    Qiu H; Xue L; Ji G; Zhou G; Huang X; Qu Y; Gao P
    Biosens Bioelectron; 2009 Jun; 24(10):3014-8. PubMed ID: 19345571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
    Zhou M; Zhai Y; Dong S
    Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in NADH electrochemical sensing design.
    Radoi A; Compagnone D
    Bioelectrochemistry; 2009 Sep; 76(1-2):126-34. PubMed ID: 19608463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of serum alcohol using a disposable biosensor.
    Luo P; Liu Y; Xie G; Xiong X; Deng S; Song F
    Forensic Sci Int; 2008 Aug; 179(2-3):192-8. PubMed ID: 18653295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergetic effect for NADH oxidation of ferrocene and zeolite in modified carbon paste electrodes. New approach for dehydrogenase based biosensors.
    Serban S; El Murr N
    Biosens Bioelectron; 2004 Sep; 20(2):161-6. PubMed ID: 15308217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors.
    Zhou M; Shang L; Li B; Huang L; Dong S
    Biosens Bioelectron; 2008 Nov; 24(3):442-7. PubMed ID: 18541421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Langmuir-Blodgett films incorporating redox mediators for molecular recognition of NADH.
    Mecheri B; Piras L; Caminati G
    Bioelectrochemistry; 2004 Jun; 63(1-2):13-8. PubMed ID: 15110241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of butane to butanol coupled to electrochemical redox reaction of NAD+/NADH.
    Kang HS; Na BK; Park DH
    Biotechnol Lett; 2007 Aug; 29(8):1277-80. PubMed ID: 17549436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SiO2/SnO2/Sb2O5 microporous ceramic material for immobilization of Meldola's blue: application as an electrochemical sensor for NADH.
    Canevari TC; Vinhas RC; Landers R; Gushikem Y
    Biosens Bioelectron; 2011 Jan; 26(5):2402-6. PubMed ID: 21067911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical investigations of the reaction mechanism and kinetics between NADH and redox-active (NC)2C6H3-NHOH/(NC)2C6H3-NO from 4-nitrophthalonitrile-(NC)2C6H3-NO2-modified electrode.
    Lima PR; Santos Wde J; de Oliveira AB; Goulart MO; Kubota LT
    Biosens Bioelectron; 2008 Nov; 24(3):448-54. PubMed ID: 18562191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotubes-polymer-redox mediator hybrid thin film for electrocatalytic sensing.
    Raj CR; Chakraborty S
    Biosens Bioelectron; 2006 Dec; 22(5):700-6. PubMed ID: 16584882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New redox mediator-modified polysulfone composite films for the development of dehydrogenase-based biosensors.
    Prieto-Simón B; Fàbregas E
    Biosens Bioelectron; 2006 Jul; 22(1):131-7. PubMed ID: 16448813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyazetidine-based immobilization of redox proteins for electron-transfer-based biosensors.
    Frasconi M; Favero G; Di Fusco M; Mazzei F
    Biosens Bioelectron; 2009 Jan; 24(5):1424-30. PubMed ID: 18829298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemistry of immobilized redox enzymes: kinetic characteristics of NADH oxidation catalysis at diaphorase monolayers affinity immobilized on electrodes.
    Limoges B; Marchal D; Mavré F; Savéant JM
    J Am Chem Soc; 2006 Feb; 128(6):2084-92. PubMed ID: 16464111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.