These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 15046755)

  • 1. Construction of a glucose sensor based on a screen-printed electrode and a novel mediator pyocyanin from Pseudomonas aeruginosa.
    Ohfuji K; Sato N; Hamada-Sato N; Kobayashi T; Imada C; Okuma H; Watanabe E
    Biosens Bioelectron; 2004 May; 19(10):1237-44. PubMed ID: 15046755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme electrodes based on sono-gel containing ferrocenyl compounds.
    Ballarin B; Cassani MC; Mazzoni R; Scavetta E; Tonelli D
    Biosens Bioelectron; 2007 Feb; 22(7):1317-22. PubMed ID: 16846733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes.
    Guan WJ; Li Y; Chen YQ; Zhang XB; Hu GQ
    Biosens Bioelectron; 2005 Sep; 21(3):508-12. PubMed ID: 16076441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approaching intelligent infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection.
    Sharp D; Gladstone P; Smith RB; Forsythe S; Davis J
    Bioelectrochemistry; 2010 Feb; 77(2):114-9. PubMed ID: 19666245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amperometric glucose biosensor based on gold-deposited polyvinylferrocene film on Pt electrode.
    Topçu Sulak M; Gökdoğan O; Gülce A; Gülce H
    Biosens Bioelectron; 2006 Mar; 21(9):1719-26. PubMed ID: 16198102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose.
    Qiu JD; Zhou WM; Guo J; Wang R; Liang RP
    Anal Biochem; 2009 Feb; 385(2):264-9. PubMed ID: 19100707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of screen-printed microband biosensors to end-point measurements of glucose and cell numbers in HepG2 cell culture.
    Pemberton RM; Xu J; Pittson R; Biddle N; Drago GA; Jackson SK; Hart JP
    Anal Biochem; 2009 Feb; 385(2):334-41. PubMed ID: 19027709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screen-printed biosensors for glucose determination in grape juice.
    Gonzalo-Ruiz J; Asunción Alonso-Lomillo M; Javier Muñoz F
    Biosens Bioelectron; 2007 Feb; 22(7):1517-21. PubMed ID: 16930981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction, assembling and application of a trehalase-GOD enzyme electrode system.
    Antonelli ML; Arduini F; Laganà A; Moscone D; Siliprandi V
    Biosens Bioelectron; 2009 Jan; 24(5):1382-8. PubMed ID: 18815024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyvinylferrocenium modified Pt electrode for anaerobic glucose monitoring.
    Gülce A; Gülce H
    J Biochem Biophys Methods; 2005 Jan; 62(1):81-92. PubMed ID: 15656946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel, disposable, screen-printed amperometric biosensor for glucose in serum fabricated using a water-based carbon ink.
    Crouch E; Cowell DC; Hoskins S; Pittson RW; Hart JP
    Biosens Bioelectron; 2005 Nov; 21(5):712-8. PubMed ID: 16242609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct electrochemistry of glucose oxidase immobilized on a hexagonal mesoporous silica-MCM-41 matrix.
    Dai ZH; Ni J; Huang XH; Lu GF; Bao JC
    Bioelectrochemistry; 2007 May; 70(2):250-6. PubMed ID: 17107826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An electrochemical sensor based on gold nanoparticles-functionalized reduced graphene oxide screen printed electrode for the detection of pyocyanin biomarker in Pseudomonas aeruginosa infection.
    Rashid JIA; Kannan V; Ahmad MH; Mon AA; Taufik S; Miskon A; Ong KK; Yusof NA
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111625. PubMed ID: 33545813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New glucose biosensor based on glucose oxidase-immobilized gelatin film coated electrodes.
    Sungur S; Emregül E; Günendi G; Numanoğlu Y
    J Biomater Appl; 2004 Apr; 18(4):265-77. PubMed ID: 15070514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amperometric glucose biosensor based on assisted ion transfer through gel-supported microinterfaces.
    Pereira CM; Oliveira JM; Silva RM; Silva F
    Anal Chem; 2004 Sep; 76(18):5547-51. PubMed ID: 15362919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a disposable glucose biosensor using electroless-plated Au/Ni/copper low electrical resistance electrodes.
    Lee SR; Lee YT; Sawada K; Takao H; Ishida M
    Biosens Bioelectron; 2008 Nov; 24(3):410-4. PubMed ID: 18524563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselective screen-printed amperometric biosensor for the determination of D-amino acids.
    Wcisło M; Compagnone D; Trojanowicz M
    Bioelectrochemistry; 2007 Sep; 71(1):91-8. PubMed ID: 17071143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A glucose biosensor based on Prussian blue/chitosan hybrid film.
    Wang X; Gu H; Yin F; Tu Y
    Biosens Bioelectron; 2009 Jan; 24(5):1527-30. PubMed ID: 19010659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential use of hydrazine as an alternative to peroxidase in a biosensor: comparison between hydrazine and HRP-based glucose sensors.
    Rahman MA; Won MS; Shim YB
    Biosens Bioelectron; 2005 Aug; 21(2):257-65. PubMed ID: 16023952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Palladium hexacyanoferrate hydrogel as a novel and simple enzyme immobilization matrix for amperometric biosensors.
    Iveković D; Milardović S; Grabarić BS
    Biosens Bioelectron; 2004 Nov; 20(4):872-8. PubMed ID: 15522604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.