These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 15046773)
1. Metabolism-mediated cytotoxicity of ochratoxin A. Simarro Doorten AY; Bull S; van der Doelen MA; Fink-Gremmels J Toxicol In Vitro; 2004 Jun; 18(3):271-7. PubMed ID: 15046773 [TBL] [Abstract][Full Text] [Related]
2. Metabolism-mediated Ochratoxin A genotoxicity in the single-cell gel electrophoresis (Comet) assay. Simarro Doorten Y; Nijmeijer S; de Nijs-Tjon L; Fink-Gremmels J Food Chem Toxicol; 2006 Feb; 44(2):261-70. PubMed ID: 16139406 [TBL] [Abstract][Full Text] [Related]
3. A Genetically engineered cell-based system for detecting metabolism-mediated toxicity. Bull S; Langezaal I; Clothier R; Coecke S Altern Lab Anim; 2001; 29(6):703-16. PubMed ID: 11709044 [TBL] [Abstract][Full Text] [Related]
4. The role of CYP2C in the in vitro bioactivation of the contraceptive steroid desogestrel. Gentile DM; Verhoeven CH; Shimada T; Back DJ J Pharmacol Exp Ther; 1998 Dec; 287(3):975-82. PubMed ID: 9864282 [TBL] [Abstract][Full Text] [Related]
5. Metabolic pathways of ochratoxin A. Wu Q; Dohnal V; Huang L; Kuča K; Wang X; Chen G; Yuan Z Curr Drug Metab; 2011 Jan; 12(1):1-10. PubMed ID: 21222585 [TBL] [Abstract][Full Text] [Related]
6. Identification of the human cytochrome P450 enzymes involved in the in vitro biotransformation of lynestrenol and norethindrone. Korhonen T; Turpeinen M; Tolonen A; Laine K; Pelkonen O J Steroid Biochem Mol Biol; 2008 May; 110(1-2):56-66. PubMed ID: 18356043 [TBL] [Abstract][Full Text] [Related]
7. Ochratoxin A: Toxicity, oxidative stress and metabolism. Tao Y; Xie S; Xu F; Liu A; Wang Y; Chen D; Pan Y; Huang L; Peng D; Wang X; Yuan Z Food Chem Toxicol; 2018 Feb; 112():320-331. PubMed ID: 29309824 [TBL] [Abstract][Full Text] [Related]
8. Modulation of the xenobiotic transformation system and inflammatory response by ochratoxin A exposure using a co-culture system of Caco-2 and HepG2 cells. González-Arias CA; Crespo-Sempere A; Marín S; Sanchis V; Ramos AJ Food Chem Toxicol; 2015 Dec; 86():245-52. PubMed ID: 26505656 [TBL] [Abstract][Full Text] [Related]
9. Development of human cytochrome P450-expressing cell lines: application in mutagenicity testing of ochratoxin A. de Groene EM; Hassing IG; Blom MJ; Seinen W; Fink-Gremmels J; Horbach GJ Cancer Res; 1996 Jan; 56(2):299-304. PubMed ID: 8542584 [TBL] [Abstract][Full Text] [Related]
10. Structure-activity relationships imply different mechanisms of action for ochratoxin A-mediated cytotoxicity and genotoxicity. Hadjeba-Medjdoub K; Tozlovanu M; Pfohl-Leszkowicz A; Frenette C; Paugh RJ; Manderville RA Chem Res Toxicol; 2012 Jan; 25(1):181-90. PubMed ID: 22126095 [TBL] [Abstract][Full Text] [Related]
11. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Kazui M; Nishiya Y; Ishizuka T; Hagihara K; Farid NA; Okazaki O; Ikeda T; Kurihara A Drug Metab Dispos; 2010 Jan; 38(1):92-9. PubMed ID: 19812348 [TBL] [Abstract][Full Text] [Related]
12. Ochratoxin A: induction of (oxidative) DNA damage, cytotoxicity and apoptosis in mammalian cell lines and primary cells. Kamp HG; Eisenbrand G; Schlatter J; Würth K; Janzowski C Toxicology; 2005 Jan; 206(3):413-25. PubMed ID: 15588931 [TBL] [Abstract][Full Text] [Related]
13. Assessment and characterisation of yeast-based products intended to mitigate ochratoxin exposure using in vitro and in vivo models. Pfohl-Leszkowicz A; Hadjeba-Medjdoub K; Ballet N; Schrickx J; Fink-Gremmels J Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(4):604-16. PubMed ID: 25296248 [TBL] [Abstract][Full Text] [Related]
14. Evidence of a new dechlorinated ochratoxin A derivative formed in opossum kidney cell cultures after pretreatment by modulators of glutathione pathways: correlation with DNA-adduct formation. Faucet-Marquis V; Pont F; Størmer FC; Rizk T; Castegnaro M; Pfohl-Leszkowicz A Mol Nutr Food Res; 2006 May; 50(6):530-42. PubMed ID: 16671059 [TBL] [Abstract][Full Text] [Related]
15. Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes. Jiang R; Yamaori S; Takeda S; Yamamoto I; Watanabe K Life Sci; 2011 Aug; 89(5-6):165-70. PubMed ID: 21704641 [TBL] [Abstract][Full Text] [Related]
16. Identification of human liver cytochrome P450 enzymes involved in biotransformation of vicriviroc, a CCR5 receptor antagonist. Ghosal A; Ramanathan R; Yuan Y; Hapangama N; Chowdhury SK; Kishnani NS; Alton KB Drug Metab Dispos; 2007 Dec; 35(12):2186-95. PubMed ID: 17827338 [TBL] [Abstract][Full Text] [Related]
17. Biotransformation of parathion in human liver: participation of CYP3A4 and its inactivation during microsomal parathion oxidation. Butler AM; Murray M J Pharmacol Exp Ther; 1997 Feb; 280(2):966-73. PubMed ID: 9023313 [TBL] [Abstract][Full Text] [Related]
18. Approach to predict the contribution of cytochrome P450 enzymes to drug metabolism in the early drug-discovery stage: the effect of the expression of cytochrome b(5) with recombinant P450 enzymes. Emoto C; Iwasaki K Xenobiotica; 2007 Sep; 37(9):986-99. PubMed ID: 17896325 [TBL] [Abstract][Full Text] [Related]
19. Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Yamazaki H; Shimada T Arch Biochem Biophys; 1997 Oct; 346(1):161-9. PubMed ID: 9328296 [TBL] [Abstract][Full Text] [Related]
20. Identification of cytochromes P450 2C9 and 3A4 as the major catalysts of phenprocoumon hydroxylation in vitro. Ufer M; Svensson JO; Krausz KW; Gelboin HV; Rane A; Tybring G Eur J Clin Pharmacol; 2004 May; 60(3):173-82. PubMed ID: 15054565 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]