BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 15046886)

  • 1. Resorbability of bone substitute biomaterials by human osteoclasts.
    Schilling AF; Linhart W; Filke S; Gebauer M; Schinke T; Rueger JM; Amling M
    Biomaterials; 2004 Aug; 25(18):3963-72. PubMed ID: 15046886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-based resorption assays for bone graft substitutes.
    Zhang Z; Egaña JT; Reckhenrich AK; Schenck TL; Lohmeyer JA; Schantz JT; Machens HG; Schilling AF
    Acta Biomater; 2012 Jan; 8(1):13-9. PubMed ID: 21971416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomaterials with hierarchically defined micro- and nanoscale structure.
    Tan J; Saltzman WM
    Biomaterials; 2004 Aug; 25(17):3593-601. PubMed ID: 15020133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro.
    Akay G; Birch MA; Bokhari MA
    Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of bioactive glasses on bone marrow stromal cells differentiation.
    Bosetti M; Cannas M
    Biomaterials; 2005 Jun; 26(18):3873-9. PubMed ID: 15626435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Cellular culture of osteoblasts and fibroblasts on porous calcium-phosphate bone substitutes].
    Chouteau J; Bignon A; Chavassieux P; Chevalier J; Melin M; Fantozzi G; Boivin G; Hartmann D; Carret JP
    Rev Chir Orthop Reparatrice Appar Mot; 2003 Feb; 89(1):44-52. PubMed ID: 12610435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of hybrid materials based on hydroxyethylmethacrylate as supports for improving cell adhesion and proliferation.
    Schiraldi C; D'Agostino A; Oliva A; Flamma F; De Rosa A; Apicella A; Aversa R; De Rosa M
    Biomaterials; 2004 Aug; 25(17):3645-53. PubMed ID: 15020139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sphene ceramics for orthopedic coating applications: an in vitro and in vivo study.
    Ramaswamy Y; Wu C; Dunstan CR; Hewson B; Eindorf T; Anderson GI; Zreiqat H
    Acta Biomater; 2009 Oct; 5(8):3192-204. PubMed ID: 19457458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomaterials in periodontal regenerative surgery: effects of cryopreserved bone, commercially available coral, demineralized freeze-dried dentin, and cementum on periodontal ligament fibroblasts and osteoblasts.
    Devecioğlu D; Tözüm TF; Sengün D; Nohutcu RM
    J Biomater Appl; 2004 Oct; 19(2):107-20. PubMed ID: 15381784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoclastic bioresorption of biomaterials: two- and three-dimensional imaging and quantification.
    Winkler T; Hoenig E; Huber G; Janssen R; Fritsch D; Gildenhaar R; Berger G; Morlock MM; Schilling AF
    Int J Artif Organs; 2010 Apr; 33(4):198-203. PubMed ID: 20458689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro: osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds.
    Detsch R; Schaefer S; Deisinger U; Ziegler G; Seitz H; Leukers B
    J Biomater Appl; 2011 Sep; 26(3):359-80. PubMed ID: 20659962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteoclastogenesis on hydroxyapatite ceramics: the effect of carbonate substitution.
    Spence G; Patel N; Brooks R; Bonfield W; Rushton N
    J Biomed Mater Res A; 2010 Mar; 92(4):1292-300. PubMed ID: 19343778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volumetric analysis of osteoclastic bioresorption of calcium phosphate ceramics with different solubilities.
    Winkler T; Hoenig E; Gildenhaar R; Berger G; Fritsch D; Janssen R; Morlock MM; Schilling AF
    Acta Biomater; 2010 Oct; 6(10):4127-35. PubMed ID: 20451677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of a three-dimensional nanostructured biomaterial for tissue engineering of bone.
    Garreta E; Gasset D; Semino C; Borrós S
    Biomol Eng; 2007 Feb; 24(1):75-80. PubMed ID: 16846750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcification as an indicator of osteoinductive capacity of biomaterials in osteoblastic cell cultures.
    Declercq HA; Verbeeck RM; De Ridder LI; Schacht EH; Cornelissen MJ
    Biomaterials; 2005 Aug; 26(24):4964-74. PubMed ID: 15769532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Invitro study of adherent mandibular osteoblast-like cells on carrier materials.
    Turhani D; Weissenböck M; Watzinger E; Yerit K; Cvikl B; Ewers R; Thurnher D
    Int J Oral Maxillofac Surg; 2005 Jul; 34(5):543-50. PubMed ID: 16053876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials.
    Unger RE; Sartoris A; Peters K; Motta A; Migliaresi C; Kunkel M; Bulnheim U; Rychly J; Kirkpatrick CJ
    Biomaterials; 2007 Sep; 28(27):3965-76. PubMed ID: 17582491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells.
    Kim HJ; Kim UJ; Vunjak-Novakovic G; Min BH; Kaplan DL
    Biomaterials; 2005 Jul; 26(21):4442-52. PubMed ID: 15701373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proliferation and osteogenic differentiation of mesenchymal stem cells cultured onto three different polymers in vitro.
    Jäger M; Feser T; Denck H; Krauspe R
    Ann Biomed Eng; 2005 Oct; 33(10):1319-32. PubMed ID: 16240081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes.
    Lee SJ; Choi JS; Park KS; Khang G; Lee YM; Lee HB
    Biomaterials; 2004 Aug; 25(19):4699-707. PubMed ID: 15120516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.