These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 15046916)

  • 1. Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin.
    Dai NT; Williamson MR; Khammo N; Adams EF; Coombes AG
    Biomaterials; 2004 Aug; 25(18):4263-71. PubMed ID: 15046916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A co-cultured skin model based on cell support membranes.
    Dai NT; Yeh MK; Liu DD; Adams EF; Chiang CH; Yen CY; Shih CM; Sytwu HK; Chen TM; Wang HJ; Williamson MR; Coombes AG
    Biochem Biophys Res Commun; 2005 Apr; 329(3):905-8. PubMed ID: 15752741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface properties and biocompatibility of solvent-cast poly[-caprolactone] films.
    Tang ZG; Black RA; Curran JM; Hunt JA; Rhodes NP; Williams DF
    Biomaterials; 2004 Aug; 25(19):4741-8. PubMed ID: 15120520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of chitosan-polycaprolactone blends for tissue engineering applications.
    Sarasam A; Madihally SV
    Biomaterials; 2005 Sep; 26(27):5500-8. PubMed ID: 15860206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gravity spun polycaprolactone fibres for soft tissue engineering: interaction with fibroblasts and myoblasts in cell culture.
    Williamson MR; Adams EF; Coombes AG
    Biomaterials; 2006 Mar; 27(7):1019-26. PubMed ID: 16054685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human single-donor composite skin substitutes based on collagen and polycaprolactone copolymer.
    Dai NT; Yeh MK; Chiang CH; Chen KC; Liu TH; Feng AC; Chao LL; Shih CM; Sytwu HK; Chen SL; Chen TM; Adams EF
    Biochem Biophys Res Commun; 2009 Aug; 386(1):21-5. PubMed ID: 19497301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane.
    Venugopal JR; Zhang Y; Ramakrishna S
    Artif Organs; 2006 Jun; 30(6):440-6. PubMed ID: 16734595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatibility of sorbitol-containing polyesters. Part I: Synthesis, surface analysis and cell response in vitro.
    Mei Y; Kumar A; Gao W; Gross R; Kennedy SB; Washburn NR; Amis EJ; Elliott JT
    Biomaterials; 2004 Aug; 25(18):4195-201. PubMed ID: 15046909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of PEGT/PBT as a dermal scaffold for skin tissue engineering.
    El-Ghalbzouri A; Lamme EN; van Blitterswijk C; Koopman J; Ponec M
    Biomaterials; 2004 Jul; 25(15):2987-96. PubMed ID: 14967531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel dermal substitute based on biofunctionalized electrospun PCL nanofibrous matrix.
    Gümüşderelioğlu M; Dalkıranoğlu S; Aydın RS; Cakmak S
    J Biomed Mater Res A; 2011 Sep; 98(3):461-72. PubMed ID: 21661095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers.
    Fujihara K; Kotaki M; Ramakrishna S
    Biomaterials; 2005 Jul; 26(19):4139-47. PubMed ID: 15664641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and evaluation of whey protein-based biofilms as substrates for in vitro cell cultures.
    Gilbert V; Rouabhia M; Wang H; Arnould AL; Remondetto G; Subirade M
    Biomaterials; 2005 Dec; 26(35):7471-80. PubMed ID: 16023713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial membrane potential and reactive oxygen species content of endothelial and smooth muscle cells cultured on poly(epsilon-caprolactone) films.
    Serrano MC; Pagani R; Manzano M; Comas JV; Portolés MT
    Biomaterials; 2006 Sep; 27(27):4706-14. PubMed ID: 16730794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of hybrid materials based on hydroxyethylmethacrylate as supports for improving cell adhesion and proliferation.
    Schiraldi C; D'Agostino A; Oliva A; Flamma F; De Rosa A; Apicella A; Aversa R; De Rosa M
    Biomaterials; 2004 Aug; 25(17):3645-53. PubMed ID: 15020139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting.
    Kempf M; Miyamura Y; Liu PY; Chen AC; Nakamura H; Shimizu H; Tabata Y; Kimble RM; McMillan JR
    Biomaterials; 2011 Jul; 32(21):4782-92. PubMed ID: 21477857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering a titanium and polycaprolactone construct for a biocompatible interface between the body and artificial limb.
    Smith CM; Roy TD; Bhalkikar A; Li B; Hickman JJ; Church KH
    Tissue Eng Part A; 2010 Feb; 16(2):717-24. PubMed ID: 19769529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Culture of subconfluent human fibroblasts and keratinocytes using biodegradable transfer membranes.
    Johnen C; Steffen I; Beichelt D; Bräutigam K; Witascheck T; Toman N; Moser V; Ottomann C; Hartmann B; Gerlach JC
    Burns; 2008 Aug; 34(5):655-63. PubMed ID: 18226463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collagen-coated polycaprolactone microparticles as a controlled drug delivery system.
    Aishwarya S; Mahalakshmi S; Sehgal PK
    J Microencapsul; 2008 Aug; 25(5):298-306. PubMed ID: 18465301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue engineered plant extracts as nanofibrous wound dressing.
    Jin G; Prabhakaran MP; Kai D; Annamalai SK; Arunachalam KD; Ramakrishna S
    Biomaterials; 2013 Jan; 34(3):724-34. PubMed ID: 23111334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro characterization of natural and synthetic dermal matrices cultured with human dermal fibroblasts.
    Ng KW; Khor HL; Hutmacher DW
    Biomaterials; 2004 Jun; 25(14):2807-18. PubMed ID: 14962559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.