BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 15046926)

  • 1. Drug release from starch-acetate microparticles and films with and without incorporated alpha-amylase.
    Tuovinen L; Peltonen S; Liikola M; Hotakainen M; Lahtela-Kakkonen M; Poso A; Järvinen K
    Biomaterials; 2004 Aug; 25(18):4355-62. PubMed ID: 15046926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug release from starch-acetate films.
    Tuovinen L; Peltonen S; Järvinen K
    J Control Release; 2003 Sep; 91(3):345-54. PubMed ID: 12932712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous starch acetate dispersion as a novel coating material for controlled release products.
    Tarvainen M; Peltonen S; Mikkonen H; Elovaara M; Tuunainen M; Paronen P; Ketolainen J; Sutinen R
    J Control Release; 2004 Apr; 96(1):179-91. PubMed ID: 15063040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug release from alpha,beta-poly(N-2-hydroxyethyl)-DL-aspartamide-based microparticles.
    Pitarresi G; Pierro P; Giammona G; Iemma F; Muzzalupo R; Picci N
    Biomaterials; 2004 Aug; 25(18):4333-43. PubMed ID: 15046924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Starch acetate microparticles for drug delivery into retinal pigment epithelium-in vitro study.
    Tuovinen L; Ruhanen E; Kinnarinen T; Rönkkö S; Pelkonen J; Urtti A; Peltonen S; Järvinen K
    J Control Release; 2004 Aug; 98(3):407-13. PubMed ID: 15312996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic degradation of and bovine serum albumin release from starch-acetate films.
    Tuovinen LM; Peltonen SH; Suortti TM; Crowther NJ; Elomaa MA; Järvinen KP
    Biomacromolecules; 2002; 3(2):284-90. PubMed ID: 11888313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encapsulation of alpha-amylase into starch-based biomaterials: an enzymatic approach to tailor their degradation rate.
    Azevedo HS; Reis RL
    Acta Biomater; 2009 Oct; 5(8):3021-30. PubMed ID: 19427418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled transdermal delivery of model drug compounds by MEMS microneedle array.
    Xie Y; Xu B; Gao Y
    Nanomedicine; 2005 Jun; 1(2):184-90. PubMed ID: 17292077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic erosion of bioartificial membranes to control drug delivery.
    Coluccio ML; Ciardelli G; Bertoni F; Silvestri D; Cristallini C; Giusti P; Barbani N
    Macromol Biosci; 2006 Jun; 6(6):403-11. PubMed ID: 16775815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of binder additives on terbutaline hydrogels of alpha-PVA/NaCl/H(2)O system in drug delivery: I. Effect of gelatin and soluble starch.
    Shaheen SM; Takezoe K; Yamaura K
    Biomed Mater Eng; 2004; 14(4):371-82. PubMed ID: 15472386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and properties of hydrophobic films based on acetylated broken-rice starch nanocrystals for slow protein delivery.
    Xiao H; Yang F; Lin Q; Zhang Q; Tang W; Zhang L; Xu D; Liu GQ
    Int J Biol Macromol; 2019 Oct; 138():556-564. PubMed ID: 31336116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carboxymethyl high amylose starch as excipient for controlled drug release: mechanistic study and the influence of degree of substitution.
    Lemieux M; Gosselin P; Mateescu MA
    Int J Pharm; 2009 Dec; 382(1-2):172-82. PubMed ID: 19716866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PLGA-based drug delivery systems: importance of the type of drug and device geometry.
    Klose D; Siepmann F; Elkharraz K; Siepmann J
    Int J Pharm; 2008 Apr; 354(1-2):95-103. PubMed ID: 18055140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled release multiparticulate beads coated with starch acetate: material characterization, and identification of critical formulation and process variables.
    Nutan MT; Vaithiyalingam SR; Khan MA
    Pharm Dev Technol; 2007; 12(3):307-20. PubMed ID: 17613894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport properties of EVAl-starch-alpha amylase membranes.
    Coluccio ML; Barbani N; Bianchini A; Silvestri D; Mauri R
    Biomacromolecules; 2005; 6(3):1389-96. PubMed ID: 15877357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encapsulation of proteins in biodegradable polymeric microparticles using electrospray in the Taylor cone-jet mode.
    Xie J; Wang CH
    Biotechnol Bioeng; 2007 Aug; 97(5):1278-90. PubMed ID: 17216662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug release and its relationship with kinetic and thermodynamic parameters of drug sorption onto starch acetate fibers.
    Xu W; Yang Y
    Biotechnol Bioeng; 2010 Mar; 105(4):814-22. PubMed ID: 19882717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-amylose sodium carboxymethyl starch matrices for oral, sustained drug-release: formulation aspects and in vitro drug-release evaluation.
    Brouillet F; Bataille B; Cartilier L
    Int J Pharm; 2008 May; 356(1-2):52-60. PubMed ID: 18280069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-amylose carboxymethyl starch matrices for oral sustained drug-release: in vitro and in vivo evaluation.
    Nabais T; Brouillet F; Kyriacos S; Mroueh M; Amores da Silva P; Bataille B; Chebli C; Cartilier L
    Eur J Pharm Biopharm; 2007 Mar; 65(3):371-8. PubMed ID: 17275270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular interaction in alginate beads reinforced with sodium starch glycolate or magnesium aluminum silicate, and their physical characteristics.
    Puttipipatkhachorn S; Pongjanyakul T; Priprem A
    Int J Pharm; 2005 Apr; 293(1-2):51-62. PubMed ID: 15778044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.