BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15046933)

  • 1. Estimation of the minimum number of test specimens for fatigue testing of acrylic bone cement.
    Lewis G; Sadhasivini A
    Biomaterials; 2004 Aug; 25(18):4425-32. PubMed ID: 15046933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new, reliable, and simple-to-use method for the analysis of a population of values of a random variable using the Weibull probability distribution: application to acrylic bone cement fatigue results.
    Janna S; Dwiggins DP; Lewis G
    Biomed Mater Eng; 2005; 15(5):349-55. PubMed ID: 16179755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of the viscosity classification of an acrylic bone cement on its in vitro fatigue performance.
    Lewis G; Janna S
    Biomed Mater Eng; 2004; 14(1):33-42. PubMed ID: 14757951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of the optimum loading of an antibiotic powder in an acrylic bone cement: gentamicin sulfate in SmartSet HV.
    Lewis G; Janna S
    Acta Orthop; 2006 Aug; 77(4):622-7. PubMed ID: 16929440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the method of blending an antibiotic powder with an acrylic bone cement powder on physical, mechanical, and thermal properties of the cured cement.
    Lewis G; Janna S; Bhattaram A
    Biomaterials; 2005 Jul; 26(20):4317-25. PubMed ID: 15683656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of two methods of fatigue testing bone cement.
    Tanner KE; Wang JS; Kjellson F; Lidgren L
    Acta Biomater; 2010 Mar; 6(3):943-52. PubMed ID: 19766742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Damage accumulation, fatigue and creep behaviour of vacuum mixed bone cement.
    Jeffers JR; Browne M; Taylor M
    Biomaterials; 2005 Sep; 26(27):5532-41. PubMed ID: 15860209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compressive fatigue properties of a commercially available acrylic bone cement for vertebroplasty.
    Ajaxon I; Persson C
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1199-207. PubMed ID: 24659042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biomechanical strength of bone cement impregnated with diphosphonate].
    Cai XZ; Yan SG; Ying ZM; Xu YQ; Lü RK
    Zhonghua Wai Ke Za Zhi; 2009 Mar; 47(6):465-8. PubMed ID: 19595238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on modelling of PMMA bone cement polymerisation.
    Stańczyk M
    J Biomech; 2005 Jul; 38(7):1397-403. PubMed ID: 15922750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative influence of composition and viscosity of acrylic bone cement on its apparent fracture toughness.
    Lewis G
    Biomed Mater Eng; 2000; 10(1):1-11. PubMed ID: 10950202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of a pre-blended antibiotic (gentamicin sulfate powder) on various mechanical, thermal, and physical properties of three acrylic bone cements.
    Lewis G; Bhattaram A
    J Biomater Appl; 2006 Apr; 20(4):377-408. PubMed ID: 16443619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative measurement of the stresses induced during polymerisation of bone cement.
    Roques A; Browne M; Taylor A; New A; Baker D
    Biomaterials; 2004 Aug; 25(18):4415-24. PubMed ID: 15046932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of vacuum-mixed acrylic bone cement.
    Lewis G; Austin GE
    J Appl Biomater; 1994; 5(4):307-14. PubMed ID: 8580537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acrylic bone cements: mechanical and physical properties.
    Kuehn KD; Ege W; Gopp U
    Orthop Clin North Am; 2005 Jan; 36(1):29-39, v-vi. PubMed ID: 15542120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of test specimen cross-sectional shape on the in vitro fatigue life of acrylic bone cement.
    Lewis G; Janna S
    Biomaterials; 2003 Oct; 24(23):4315-21. PubMed ID: 12853262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propagation of fatigue cracks in acrylic bone cements containing different radiopaque agents.
    Manero JM; Ginebra MP; Gil FJ; Planell JA; Delgado JA; Morejon L; Artola A; Gurruchaga M; Goñi I
    Proc Inst Mech Eng H; 2004; 218(3):167-72. PubMed ID: 15239567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain-controlled fatigue of acrylic bone cement.
    Carter DR; Gates EI; Harris WH
    J Biomed Mater Res; 1982 Sep; 16(5):647-57. PubMed ID: 7130218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acrylic bone cements modified with beta-TCP particles encapsulated with poly(ethylene glycol).
    Vázquez B; Ginebra MP; Gil X; Planell JA; San Román J
    Biomaterials; 2005 Jul; 26(20):4309-16. PubMed ID: 15683655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.