BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 15047215)

  • 1. Fourier transform infrared (FTIR) spectral mapping of the cervical transformation zone, and dysplastic squamous epithelium.
    Wood BR; Chiriboga L; Yee H; Quinn MA; McNaughton D; Diem M
    Gynecol Oncol; 2004 Apr; 93(1):59-68. PubMed ID: 15047215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared spectroscopy of human tissue. IV. Detection of dysplastic and neoplastic changes of human cervical tissue via infrared microscopy.
    Chiriboga L; Xie P; Yee H; Zarou D; Zakim D; Diem M
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):219-29. PubMed ID: 9551653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytologically normal cells from neoplastic cervical samples display extensive structural abnormalities on IR spectroscopy: implications for tumor biology.
    Cohenford MA; Rigas B
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15327-32. PubMed ID: 9860968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination of normal from pre-malignant cervical tissue by Raman mapping of de-paraffinized histological tissue sections.
    Tan KM; Herrington CS; Brown CT
    J Biophotonics; 2011 Jan; 4(1-2):40-8. PubMed ID: 20082345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated cervical cells.
    Wong PT; Senterman MK; Jackli P; Wong RK; Salib S; Campbell CE; Feigel R; Faught W; Fung Kee Fung M
    Biopolymers; 2002; 67(6):376-86. PubMed ID: 12209445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging.
    Steller W; Einenkel J; Horn LC; Braumann UD; Binder H; Salzer R; Krafft C
    Anal Bioanal Chem; 2006 Jan; 384(1):145-54. PubMed ID: 16328253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Fourier transform infrared spectroscopy study on normal and malignant tissues of cervix].
    Li WX; Zheng QQ; Wang P; Li YQ; Chen GH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Oct; 26(10):1833-7. PubMed ID: 17205732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Fourier-transform infrared spectroscopic screening of exfoliated cervical cells with standard Papanicolaou screening.
    Fung Kee Fung M; Senterman M; Eid P; Faught W; Mikhael NZ; Wong PT
    Gynecol Oncol; 1997 Jul; 66(1):10-5. PubMed ID: 9234913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting structural changes at the molecular level with Fourier transform infrared spectroscopy. A potential tool for prescreening preinvasive lesions of the cervix.
    Yazdi HM; Bertrand MA; Wong PT
    Acta Cytol; 1996; 40(4):664-8. PubMed ID: 8693883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated cervical precancerous cells screening system based on Fourier transform infrared spectroscopy features.
    Jusman Y; Mat Isa NA; Ng SC; Hasikin K; Abu Osman NA
    J Biomed Opt; 2016 Jul; 21(7):75005. PubMed ID: 27403606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared spectroscopy of human tissue. II. A comparative study of spectra of biopsies of cervical squamous epithelium and of exfoliated cervical cells.
    Chiriboga L; Xie P; Vigorita V; Zarou D; Zakim D; Diem M
    Biospectroscopy; 1998; 4(1):55-9. PubMed ID: 9547015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies.
    Wood BR; Quinn MA; Tait B; Ashdown M; Hislop T; Romeo M; McNaughton D
    Biospectroscopy; 1998; 4(2):75-91. PubMed ID: 9557903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experience with the Oxford tumour marker in uterine cervical lesions.
    Beltrami CA; Di Loreto C; De Nictolis M; Stramazzotti D
    Appl Pathol; 1984; 2(1):39-42. PubMed ID: 6395880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetowhite epithelium.
    MacLean AB
    Gynecol Oncol; 2004 Dec; 95(3):691-4. PubMed ID: 15581983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biospectroscopy insights into the multi-stage process of cervical cancer development: probing for spectral biomarkers in cytology to distinguish grades.
    Purandare NC; Patel II; Trevisan J; Bolger N; Kelehan R; von Bünau G; Martin-Hirsch PL; Prendiville WJ; Martin FL
    Analyst; 2013 Jul; 138(14):3909-16. PubMed ID: 23338619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix.
    Chiriboga L; Xie P; Yee H; Vigorita V; Zarou D; Zakim D; Diem M
    Biospectroscopy; 1998; 4(1):47-53. PubMed ID: 9547014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colposcopic pattern of cervicitis, dysplasia and pre-invasive cancer of the uterine cervix.
    Rubinstein E
    Acta Obstet Gynecol Scand; 1982; 61(3):253-9. PubMed ID: 7124356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variations of mitotic index in normal and dysplastic squamous epithelium of the uterine cervix as a function of endometrial maturation.
    Fadare O; Yi X; Liang SX; Ma Y; Zheng W
    Mod Pathol; 2007 Sep; 20(9):1000-8. PubMed ID: 17643095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared spectroscopy of exfoliated cervical cell specimens. Proceed with caution.
    Shaw RA; Guijon FB; Paraskevas M; Ying SL; Mantsch HH
    Anal Quant Cytol Histol; 1999 Aug; 21(4):292-302. PubMed ID: 10560506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared spectral features of exfoliated cervical cells, cervical adenocarcinoma tissue, and an adenocarcinoma cell line (SiSo).
    Neviliappan S; Fang Kan L; Tiang Lee Walter T; Arulkumaran S; Wong PT
    Gynecol Oncol; 2002 Apr; 85(1):170-4. PubMed ID: 11925139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.