These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 15047295)

  • 1. Multilayer piezocomposite structures with piezoceramic volume fractions determined by mathematical optimisation.
    Abrar A; Cochran S
    Ultrasonics; 2004 Apr; 42(1-9):259-65. PubMed ID: 15047295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and finite element modelling studies on single-layer and multi-layer 1-3 piezocomposite transducers.
    Ramesh R; Prasad CD; Kumar TK; Gavane LA; Vishnubhatla RM
    Ultrasonics; 2006 Nov; 44(4):341-9. PubMed ID: 16890265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of functionally graded piezoelectric ultrasonic transducers.
    Rubio WM; Buiochi F; Adamowski JC; Silva EC
    Ultrasonics; 2009 May; 49(4-5):484-94. PubMed ID: 19230947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible ultrasonic transducers incorporating piezoelectric fibres.
    Harvey G; Gachagan A; Mackersie JW; McCunnie T; Banks R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1999-2009. PubMed ID: 19812003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1-3 connectivity piezoelectric ceramic-polymer composite transducers made with viscous polymer processing for high frequency ultrasound.
    Abrar A; Zhang D; Su B; Button TW; Kirk KJ; Cochran S
    Ultrasonics; 2004 Apr; 42(1-9):479-84. PubMed ID: 15047332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical optimization of multilayer piezoelectric devices with nonuniform layers by simulated annealing.
    Abrar A; Cochran S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Oct; 54(10):1920-9. PubMed ID: 18019227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element modelling of dense and porous piezoceramic disc hydrophones.
    Ramesh R; Kara H; Bowen CR
    Ultrasonics; 2005 Jan; 43(3):173-81. PubMed ID: 15556652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical modelling of frequency dependent elastic loss in composite piezoelectric transducers.
    Orr LA; Mulholland AJ; O'Leary RL; Parr A; Pethrick RA; Hayward G
    Ultrasonics; 2007 Dec; 47(1-4):130-7. PubMed ID: 17980896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation into the effects of modification of the passive phase for improved manufacture of 1-3 connectivity piezocomposite transducers.
    O'Leary RL; Hayward G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):511-6. PubMed ID: 18238451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and performance of high-frequency composite transducers with triangular-pillar geometry.
    Brown JA; Chérin E; Yin J; Foster FS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):827-36. PubMed ID: 19406712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unidimensional modeling of multi-layered piezoelectric transducer structures.
    Powell DJ; Hayward G; Ting RY
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):667-77. PubMed ID: 18244218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics.
    Sarvazyan A; Fillinger L
    Ultrasonics; 2009 Mar; 49(3):301-5. PubMed ID: 19062060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermo-mechanical stress effect on 1-3 piezocomposite power transducer performance.
    Richard C; Lee HS; Guyomar D
    Ultrasonics; 2004 Apr; 42(1-9):417-24. PubMed ID: 15047322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the ultrasound transducer bandwidth on selection of the complementary Golay bit code length.
    Nowicki A; Trots I; Lewin PA; Secomski W; Tymkiewicz R
    Ultrasonics; 2007 Dec; 47(1-4):64-73. PubMed ID: 17825338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lens-focused transducer modeling using an extended KLM model.
    Maréchal P; Levassort F; Tran-Huu-Hue LP; Lethiecq M
    Ultrasonics; 2007 May; 46(2):155-67. PubMed ID: 17382986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focused ultrasound transducer for thermal treatment.
    Umemura S
    Int J Hyperthermia; 2015 Mar; 31(2):216-21. PubMed ID: 25753368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband 1-3 Piezoelectric Composite Transducer Design Using Sierpinski Gasket Fractal Geometry.
    Fang H; Qiu Z; Mulholland AJ; O'Leary RL; Gachagan A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2429-2439. PubMed ID: 30296221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A coupled analytical model for hydrostatic response of 1-3 piezocomposites.
    Rajapakse N; Chen Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1847-58. PubMed ID: 18986927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of PIMNT/epoxy 1-3 composites and ultrasonic transducer for nondestructive evaluation.
    Zhang Y; Zhao X; Wang W; Ren B; Liu D; Luo H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Sep; 58(9):1774-81. PubMed ID: 21937308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Note: Comparative experimental studies on the performance of 2-2 piezocomposite for medical ultrasound transducers.
    Marinozzi F; Bini F; Biagioni A; Grandoni A; Spicci L
    Rev Sci Instrum; 2013 Sep; 84(9):096110. PubMed ID: 24089885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.