These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 15047300)

  • 1. A general model of the axle vibration in piezoelectric motors.
    Iula A; Pappalardo M
    Ultrasonics; 2004 Apr; 42(1-9):291-6. PubMed ID: 15047300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A matrix model of the axle vibration of a piezoelectric motor.
    Iula A; Carotenuto R; Lamberti N; Pappalardo M
    Ultrasonics; 2000 Mar; 38(1-8):41-5. PubMed ID: 10829625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A piezoelectric motor using flexural vibration of a thin piezoelectric membrane.
    Lamberti N; Iula A; Pappalardo M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):23-9. PubMed ID: 18244154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical and experimental research on a disk-type non-contact ultrasonic motor.
    Yang B; Liu J; Chen D; Cai B
    Ultrasonics; 2006 Jul; 44(3):238-43. PubMed ID: 16524609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A traveling wave ultrasonic motor of high torque.
    Chen Y; Liu QL; Zhou TY
    Ultrasonics; 2006 Dec; 44 Suppl 1():e581-4. PubMed ID: 16793077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A disk-pivot structure micro piezoelectric actuator using vibration mode B11.
    Chu X; Ma L; Li L
    Ultrasonics; 2006 Dec; 44 Suppl 1():e561-4. PubMed ID: 16808953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of a rotary motor driven by an anisotropic piezoelectric composite laminate.
    Zhu ML; Lee SR; Zhang TY; Tong P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1561-74. PubMed ID: 18238702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic micro-motor using miniature piezoelectric tube with diameter of 1.0 mm.
    Zhang H; Dong SX; Zhang SY; Wang TH; Zhang ZN; Fan L
    Ultrasonics; 2006 Dec; 44 Suppl 1():e603-6. PubMed ID: 16793103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental measurements and finite element analysis of the coupled vibrational characteristics of piezoelectric shells.
    Huang YH; Ma CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):785-98. PubMed ID: 22547289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear dynamic analysis of traveling wave-type ultrasonic motors.
    Nakagawa Y; Saito A; Maeno T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):717-25. PubMed ID: 18407861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and construction of shaft-driving type piezoceramic ultrasonic motor.
    Wen FL; Mou SC; Ouyang M
    Ultrasonics; 2004 Oct; 43(1):35-47. PubMed ID: 15358527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A travelling wave rotary motor driven by three pairs of Langevin transducers.
    Iula A; Bollino G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):121-7. PubMed ID: 22293742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental method to reveal the effect of rotor magnet size and air gap on artificial heart driving motor torque and efficiency.
    Qian KX; Yuan HY; Ru WM; Zeng P
    J Med Eng Technol; 2002; 26(5):199-201. PubMed ID: 12487710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element modelling of a rotating piezoelectric ultrasonic motor.
    Frangi A; Corigliano A; Binci M; Faure P
    Ultrasonics; 2005 Oct; 43(9):747-55. PubMed ID: 15975618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel contact model of piezoelectric traveling wave rotary ultrasonic motors with the finite volume method.
    Renteria-Marquez IA; Renteria-Marquez A; Tseng BTL
    Ultrasonics; 2018 Nov; 90():5-17. PubMed ID: 29902664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actuating mechanism and design of a cylindrical traveling wave ultrasonic motor using cantilever type composite transducer.
    Liu Y; Chen W; Liu J; Shi S
    PLoS One; 2010 Apr; 5(4):e10020. PubMed ID: 20368809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled tangential-axial resonant modes of piezoelectric hollow cylinders and their application in ultrasonic motors.
    Vyshnevskyy O; Kovalev S; Mehner J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):31-6. PubMed ID: 15742560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noncontact ultrasonic transportation of small objects in a circular trajectory in air by flexural vibrations of a circular disc.
    Koyama D; Nakamura K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1434-42. PubMed ID: 20529718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ultrasonic motor using bending vibrations of a short cylinder.
    Kurosawa M; Nakamura K; Okamoto T; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(5):517-21. PubMed ID: 18290228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radial vibration characteristics of spherical piezoelectric transducers.
    Kim JO; Lee JG; Chun HY
    Ultrasonics; 2005 Jun; 43(7):531-7. PubMed ID: 15950027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.