These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 15047300)

  • 21. Design and Experiments of a Piezoelectric Motor Using Three Rotating Mode Actuators.
    Ryndzionek R; Sienkiewicz Ł; Michna M; Kutt F
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31779242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A single vibration mode tubular piezoelectric ultrasonic motor.
    He S; Chiarot PR; Park S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1049-61. PubMed ID: 21622060
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contact analysis and mathematical modeling of traveling wave ultrasonic motors.
    Zhu M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jun; 51(6):668-79. PubMed ID: 15244280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and performance analysis of a rotary traveling wave ultrasonic motor with double vibrators.
    Dong Z; Yang M; Chen Z; Xu L; Meng F; Ou W
    Ultrasonics; 2016 Sep; 71():134-141. PubMed ID: 27336793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Note: A disk-shaft shaped high-speed rotary ultrasonic motor.
    Wang L; Wang Y; Lu X; Zhao C
    Rev Sci Instrum; 2018 Dec; 89(12):126106. PubMed ID: 30599543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noncontact ultrasonic transportation of small objects over long distances in air using a bending vibrator and a reflector.
    Koyama D; Nakamura K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1152-9. PubMed ID: 20442026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional modeling of piezoelectric materials.
    Brissaud M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Sep; 57(9):2051-65. PubMed ID: 20875995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Force transfer model and characteristics of hybrid transducer type ultrasonic motors.
    Guo J; Gong S; Guo H; Liu X; Ji K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Apr; 51(4):387-95. PubMed ID: 15139540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Piezoelectric linear motor concepts based on coupling of longitudinal vibrations.
    Hemsel T; Mracek M; Twiefel J; Vasiljev P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e591-6. PubMed ID: 16782160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An ultrasonic motor driven by the phase-velocity difference between two traveling waves.
    Bai D; Ishii T; Nakamura K; Ueha S; Yonezawa T; Takahashi T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jun; 51(6):680-5. PubMed ID: 15244281
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A 2D equivalent circuit of piezoelectric ceramic ring for transducer design.
    Feng F; Shen J; Deng J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e723-6. PubMed ID: 16782145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Curved PVDF airborne transducer.
    Wang H; Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1375-86. PubMed ID: 18244333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elastic contact conditions to optimize friction drive of surface acoustic wave motor.
    Kuribayashi Kurosawa M; Takahashi M; Higuchi T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1229-37. PubMed ID: 18244284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resonance-mode effect on microcantilever mass-sensing performance in air.
    Xia X; Li X
    Rev Sci Instrum; 2008 Jul; 79(7):074301. PubMed ID: 18681721
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improvement of the longitudinal vibration system for the hybrid transducer ultrasonic motor.
    Satonobu J; Lee D; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):216-21. PubMed ID: 18238533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Performance evaluation of traveling wave ultrasonic motor based on a model with visco-elastic friction layer on stator.
    Qu J; Sun F; Zhao C
    Ultrasonics; 2006 Dec; 45(1-4):22-31. PubMed ID: 16844172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of a disk-type piezoelectric ultrasonic motor using impedance matrices.
    Kim YH; Ha SK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Dec; 50(12):1667-77. PubMed ID: 14761037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study on the radial composite piezoelectric ceramic transducer in radial vibration.
    Lin S
    Ultrasonics; 2007 Mar; 46(1):51-9. PubMed ID: 17166538
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development and study of novel non-contact ultrasonic motor based on principle of structural asymmetry.
    Stepanenko DA; Minchenya VT
    Ultrasonics; 2012 Sep; 52(7):866-72. PubMed ID: 22520741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study on the Langevin piezoelectric ceramic ultrasonic transducer of longitudinal-flexural composite vibrational mode.
    Lin S
    Ultrasonics; 2006 Jan; 44(1):109-14. PubMed ID: 16289195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.