These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 15047314)

  • 41. Transformation of acoustic waves in periodic metal grating sandwiched between piezoelectric and dielectric.
    Naumenko NF; Abbott BP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2181-7. PubMed ID: 21989881
    [TBL] [Abstract][Full Text] [Related]  

  • 42. SAW diffraction using the thin-element decomposition method.
    Fagerholm J; Friberg AT; Huttunen J; Morgan DP; Salomaa MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):505-14. PubMed ID: 18244148
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Velocity of a SAW propagating in a 2D phononic crystal.
    Bonello B; Charles C; Ganot F
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1259-63. PubMed ID: 16782148
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Elastic contact conditions to optimize friction drive of surface acoustic wave motor.
    Kuribayashi Kurosawa M; Takahashi M; Higuchi T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1229-37. PubMed ID: 18244284
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Acoustic field excited by a pulsed laser line source in a cylinder.
    Hu W; Qian M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1187-90. PubMed ID: 16793093
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Excitation and propagation of shear-horizontal-type surface and bulk acoustic waves.
    Hashimoto KY; Yamaguchi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Sep; 48(5):1181-8. PubMed ID: 11570747
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The experimental and theoretical characterization of the SAW propagation properties for zinc oxide films on silicon carbide.
    Didenko IS; Hickernell FS; Naumenko NF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):179-87. PubMed ID: 18238529
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Elastic properties of proton exchanged lithium niobate.
    Biebl EM; Russer P
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(3):330-4. PubMed ID: 18267642
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On the existence of surface acoustic waves on piezoelectric substrates.
    Peach R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Sep; 48(5):1308-20. PubMed ID: 11570756
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-resolution imaging of gigahertz polarization response arising from the interference of reflected surface acoustic waves.
    Yahyaie I; Buchanan DA; Bridges GE; Thomson DJ; Oliver DR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1212-8. PubMed ID: 22718871
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exact and approximate analysis of surface acoustic waves in an infinite elastic plate with a thin metal layer.
    Wang J; Du J; Lu W; Mao H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e941-5. PubMed ID: 16970968
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Propagation of shear horizontal surface waves in a layered piezoelectric half-space with an imperfect interface.
    Liu J; Wang Y; Wang B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1875-9. PubMed ID: 20679017
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Full band gap for surface acoustic waves in a piezoelectric phononic crystal.
    Laude V; Wilm M; Benchabane S; Khelif A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036607. PubMed ID: 15903605
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates.
    Chiu CS; Gwo S
    Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Short reflectors operating at the fundamental and second harmonics on 128 degree LiNbO3.
    Lehtonen S; Plessky VP; Salomaa MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Mar; 51(3):343-51. PubMed ID: 15128221
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The scattering of surface acoustic waves by electrical effects in two-dimensional metal film structures.
    Huang F; Paige ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(6):723-35. PubMed ID: 18290209
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Boundary integral equations from Hamilton's principle for surface acoustic waves under periodic metal gratings.
    Abe H; Sato T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1601-3. PubMed ID: 18238706
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Full-circular surface acoustic wave excitation for high resolution acoustic microscopy using spherical lens and time gate technology.
    Ishikawa I; Katakura K; Ogura Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):41-6. PubMed ID: 18238397
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diffraction of homogeneous and inhomogeneous plane waves on a doubly corrugated liquid/solid interface.
    Declercq NF; Degrieck J; Briers R; Leroy O
    Ultrasonics; 2005 Aug; 43(8):605-18. PubMed ID: 15913694
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transverse surface waves in a layered structure with a functionally graded piezoelectric substrate and a hard dielectric layer.
    Qian ZH; Jin F; Lu T; Kishimoto K
    Ultrasonics; 2009 Mar; 49(3):293-7. PubMed ID: 19036395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.