These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 15047322)

  • 1. Thermo-mechanical stress effect on 1-3 piezocomposite power transducer performance.
    Richard C; Lee HS; Guyomar D
    Ultrasonics; 2004 Apr; 42(1-9):417-24. PubMed ID: 15047322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selecting passive and active materials for 1.3 composite power transducers.
    Richard C; Goujon L; Guyomar D; Lee HS; Grange G
    Ultrasonics; 2002 May; 40(1-8):895-901. PubMed ID: 12160066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lead zirconate titanate/poly(vinylidene fluoride-trifluoroethylene) 1-3 composites for ultrasonic transducer applications.
    Kwok KW; Chan HC; Choy CL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):626-37. PubMed ID: 18238463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and comparison of PMN-PT single crystal, PZT and PZT-based 1-3 composite ultrasonic transducers for NDE applications.
    Kim KB; Hsu DK; Ahn B; Kim YG; Barnard DJ
    Ultrasonics; 2010 Aug; 50(8):790-7. PubMed ID: 20580050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the thermal dimensional stability of flexible polymer composite backing materials for ultrasound transducers.
    State M; Brands PJ; van de Vosse FN
    Ultrasonics; 2010 Apr; 50(4-5):458-66. PubMed ID: 19897218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation into the effects of modification of the passive phase for improved manufacture of 1-3 connectivity piezocomposite transducers.
    O'Leary RL; Hayward G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):511-6. PubMed ID: 18238451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1-3 connectivity piezoelectric ceramic-polymer composite transducers made with viscous polymer processing for high frequency ultrasound.
    Abrar A; Zhang D; Su B; Button TW; Kirk KJ; Cochran S
    Ultrasonics; 2004 Apr; 42(1-9):479-84. PubMed ID: 15047332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical and electromechanical properties of PMNT single crystals for naval sonar transducers.
    Ewart LM; McLaughlin EA; Robinson HC; Stace JJ; Amin A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2469-73. PubMed ID: 18276539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axial control of thermal coagulation using a multi-element interstitial ultrasound applicator with internal cooling.
    Deardorff DL; Diederich CJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):170-8. PubMed ID: 18238528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of PIMNT/epoxy 1-3 composites and ultrasonic transducer for nondestructive evaluation.
    Zhang Y; Zhao X; Wang W; Ren B; Liu D; Luo H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Sep; 58(9):1774-81. PubMed ID: 21937308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the radial composite piezoelectric ceramic transducer in radial vibration.
    Lin S
    Ultrasonics; 2007 Mar; 46(1):51-9. PubMed ID: 17166538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cymbal piezoelectric composite underwater acoustic transducer.
    Li D; Wu M; Oyang P; Xu X
    Ultrasonics; 2006 Dec; 44 Suppl 1():e685-7. PubMed ID: 16793099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-power, multioutput piezoelectric transformers operating at the thickness-shear vibration mode.
    Du J; Hu J; Tseng KJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 May; 51(5):502-9. PubMed ID: 15217228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and characterization of annular thickness mode piezoelectric micro ultrasonic transducers.
    Dorey RA; Dauchy F; Wang D; Berriet R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2462-8. PubMed ID: 18276538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of triangular pillar geometry on high- frequency piezocomposite transducers.
    Yin J; Lee M; Brown J; Cherin E; Foster F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Apr; 57(4):957-68. PubMed ID: 20378458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of 1-3-2 type piezoelectric composite transducer array.
    Li G; Wang LK; Luan GD; Zhang JD; Li SX
    Ultrasonics; 2006 Dec; 44 Suppl 1():e673-7. PubMed ID: 16989881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single element high frequency (<50 MHz) PZT sol gel composite ultrasound transducers.
    Lukacs M; Sayer M; Foster S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):148-59. PubMed ID: 18238526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avoiding diffraction grid effect in ultrasonic fields of 1-3 PZT polymer piezocomposite transducers.
    Nunez I; Negreira C
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(2):467-72. PubMed ID: 18238445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Piezoelectric transducer self-diagnosis under changing environmental and structural conditions.
    Lee SJ; Sohn H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Sep; 57(9):2017-27. PubMed ID: 20875991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doping effects of CuO additives on the properties of low-temperature-sintered PMnN-PZT-based piezoelectric ceramics and their applications on surface acoustic wave devices.
    Tsai CC; Chu SY; Lu CH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):660-8. PubMed ID: 19411224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.