These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 15047325)

  • 1. Imaging with lithium niobate/epoxy composites.
    Schmarje N; Saillant JF; Kirk KJ; Cochran S
    Ultrasonics; 2004 Apr; 42(1-9):439-42. PubMed ID: 15047325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1-3 connectivity lithium niobate composites for high temperature operation.
    Schmarje N; Kirk KJ; Cochran S
    Ultrasonics; 2007 Dec; 47(1-4):15-22. PubMed ID: 17662330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and simulated performance of lithium niobate 1-3 piezocomposites for 2 MHz non-destructive testing applications.
    Kirk KJ; Schmarje N
    Ultrasonics; 2013 Jan; 53(1):185-90. PubMed ID: 22784707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broad-band and high-temperature ultrasonic transducer fabricated using a Pb(In(1∕2)Nb(1∕2))-Pb(Mg(1∕3)Nb(2∕3))-PbTiO3 single crystal∕epoxy 1-3 composite.
    Zhou D; Cheung KF; Lam KH; Chen Y; Chiu YC; Dai J; Chan HL; Luo H
    Rev Sci Instrum; 2011 May; 82(5):055110. PubMed ID: 21639541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of PIMNT/epoxy 1-3 composites and ultrasonic transducer for nondestructive evaluation.
    Zhang Y; Zhao X; Wang W; Ren B; Liu D; Luo H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Sep; 58(9):1774-81. PubMed ID: 21937308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical modelling of frequency dependent elastic loss in composite piezoelectric transducers.
    Orr LA; Mulholland AJ; O'Leary RL; Parr A; Pethrick RA; Hayward G
    Ultrasonics; 2007 Dec; 47(1-4):130-7. PubMed ID: 17980896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Electromechanical Coupling Coefficient of a Laterally Excited Bulk Wave Resonator with Composite Piezoelectric Film.
    Xie Y; Liu Y; Liu J; Wang L; Liu W; Soon BW; Cai Y; Sun C
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Half-thickness inversion layer high-frequency ultrasonic transducers using LiNbO3 single crystal.
    Zhou Q; Cannata JM; Guo H; Huang C; Marmarelis VZ; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):127-33. PubMed ID: 15742569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thick aluminium nitride films deposited by room-temperature sputtering for ultrasonic applications.
    Lee CK; Cochran S; Abrar A; Kirk KJ; Placido F
    Ultrasonics; 2004 Apr; 42(1-9):485-90. PubMed ID: 15047333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the Elastic, Piezoelectric, and Dielectric Properties of Lithium Niobate from 25 °C to 900 °C Using Electrochemical Impedance Spectroscopy Resonance Method.
    Bouchy S; Zednik RJ; Bélanger P
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short reflectors operating at the fundamental and second harmonics on 128 degree LiNbO3.
    Lehtonen S; Plessky VP; Salomaa MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Mar; 51(3):343-51. PubMed ID: 15128221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lead zirconate titanate/poly(vinylidene fluoride-trifluoroethylene) 1-3 composites for ultrasonic transducer applications.
    Kwok KW; Chan HC; Choy CL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):626-37. PubMed ID: 18238463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications.
    Chan HW; Unsworth J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(4):434-41. PubMed ID: 18285003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband and high sensitive time-of-flight diffraction ultrasonic transducers based on PMNT/epoxy 1-3 piezoelectric composite.
    Liu D; Yue Q; Deng J; Lin D; Li X; Di W; Wang X; Zhao X; Luo H
    Sensors (Basel); 2015 Mar; 15(3):6807-17. PubMed ID: 25808776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling 1-3 composite piezoelectrics: thickness-mode oscillations.
    Smith WA; Auld BA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(1):40-7. PubMed ID: 18267555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction and measurement of boundary waves at the interface between LiNbO3 and silicon.
    Gachon D; Daniau W; Courjon E; Laude V; Ballandras S; Majjad H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jul; 57(7):1655-63. PubMed ID: 20639159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Planar coupling to high-Q lithium niobate disk resonators.
    Nunzi Conti G; Berneschi S; Cosi F; Pelli S; Soria S; Righini GC; Dispenza M; Secchi A
    Opt Express; 2011 Feb; 19(4):3651-6. PubMed ID: 21369190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of heat on the flow of commercial composites.
    da Costa J; McPharlin R; Hilton T; Ferracane J
    Am J Dent; 2009 Apr; 22(2):92-6. PubMed ID: 19626972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Annular bilayer magnetoelectric composites: theoretical analysis.
    Guo M; Dong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):480-9. PubMed ID: 20178914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.