BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 15047597)

  • 1. Characterization of the synaptic properties of olfactory bulb projections.
    McNamara AM; Cleland TA; Linster C
    Chem Senses; 2004 Mar; 29(3):225-33. PubMed ID: 15047597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of odor-evoked neural activity in the olfactory peduncle.
    Cousens GA
    IBRO Rep; 2020 Dec; 9():157-163. PubMed ID: 32793841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coding of odors in the anterior olfactory nucleus.
    Tsuji T; Tsuji C; Lozic M; Ludwig M; Leng G
    Physiol Rep; 2019 Nov; 7(22):e14284. PubMed ID: 31782263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term plasticity in the regulation of olfactory bulb activity by centrifugal fibers from piriform cortex.
    Cauthron JL; Stripling JS
    J Neurosci; 2014 Jul; 34(29):9677-87. PubMed ID: 25031407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential modifications of synaptic weights during odor rule learning: dynamics of interaction between the piriform cortex with lower and higher brain areas.
    Cohen Y; Wilson DA; Barkai E
    Cereb Cortex; 2015 Jan; 25(1):180-91. PubMed ID: 23960200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bulbar projecting subcortical GABAergic neurons send collateral branches extensively and selectively to primary olfactory cortical regions.
    Hook C; Puche AC
    J Comp Neurol; 2023 Feb; 531(3):451-460. PubMed ID: 36463397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gamma activity in the piriform cortex and behavioral thresholds for electrical stimulation in the olfactory bulb.
    Jirsa R; Radil T
    Acta Neurobiol Exp (Wars); 1997; 57(1):11-20. PubMed ID: 9407687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the Microstructure and Striae of the Human Olfactory Tract with Diffusion MRI.
    Echevarria-Cooper SL; Zhou G; Zelano C; Pestilli F; Parrish TB; Kahnt T
    J Neurosci; 2022 Jan; 42(1):58-68. PubMed ID: 34759031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of the rat olfactory bulb by direct ventral stimulation after nerve transection.
    Coelho DH; Socolovsky LD; Costanzo RM
    Int Forum Allergy Rhinol; 2018 May; ():. PubMed ID: 29719130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain atlas for glycoprotein hormone receptors at single-transcript level.
    Ryu V; Gumerova A; Korkmaz F; Kang SS; Katsel P; Miyashita S; Kannangara H; Cullen L; Chan P; Kuo T; Padilla A; Sultana F; Wizman SA; Kramskiy N; Zaidi S; Kim SM; New MI; Rosen CJ; Goosens KA; Frolinger T; Haroutunian V; Ye K; Lizneva D; Davies TF; Yuen T; Zaidi M
    Elife; 2022 Sep; 11():. PubMed ID: 36052994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Tubular Striatum.
    Wesson DW
    J Neurosci; 2020 Sep; 40(39):7379-7386. PubMed ID: 32968026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of direct knowledge of the human olfactory system.
    Lane G; Zhou G; Noto T; Zelano C
    Exp Neurol; 2020 Jul; 329():113304. PubMed ID: 32278646
    [No Abstract]   [Full Text] [Related]  

  • 13. Prominent facilitation at beta and gamma frequency range revealed with physiological calcium concentration in adult mouse piriform cortex in vitro.
    Gleizes M; Perrier SP; Fonta C; Nowak LG
    PLoS One; 2017; 12(8):e0183246. PubMed ID: 28820903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pronounced differences in signal processing and synaptic plasticity between piriform-hippocampal network stages: a prominent role for adenosine.
    Trieu BH; Kramár EA; Cox CD; Jia Y; Wang W; Gall CM; Lynch G
    J Physiol; 2015 Jul; 593(13):2889-907. PubMed ID: 25902928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phasic dopaminergic activity exerts fast control of cholinergic interneuron firing via sequential NMDA, D2, and D1 receptor activation.
    Wieland S; Du D; Oswald MJ; Parlato R; Köhr G; Kelsch W
    J Neurosci; 2014 Aug; 34(35):11549-59. PubMed ID: 25164653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholinergic contributions to supramodal attentional processes in rats.
    Ljubojevic V; Luu P; De Rosa E
    J Neurosci; 2014 Feb; 34(6):2264-75. PubMed ID: 24501365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Olfactory maps, circuits and computations.
    Giessel AJ; Datta SR
    Curr Opin Neurobiol; 2014 Feb; 24(1):120-32. PubMed ID: 24492088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel odor processing by two anatomically distinct olfactory bulb target structures.
    Payton CA; Wilson DA; Wesson DW
    PLoS One; 2012; 7(4):e34926. PubMed ID: 22496877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Odor-Dependent Hemodynamic Responses Measured with NIRS in the Main Olfactory Bulb of Anesthetized Rats.
    Lee HJ; Nam Y; Koh CS; Im C; Seo IS; Choi S; Shin HC
    Exp Neurobiol; 2011 Dec; 20(4):189-96. PubMed ID: 22355264
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.