BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 15047900)

  • 1. Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism.
    Potters G; Horemans N; Bellone S; Caubergs RJ; Trost P; Guisez Y; Asard H
    Plant Physiol; 2004 Apr; 134(4):1479-87. PubMed ID: 15047900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A protective role for glutathione-dependent reduction of dehydroascorbic acid in lens epithelium.
    Sasaki H; Giblin FJ; Winkler BS; Chakrapani B; Leverenz V; Shu CC
    Invest Ophthalmol Vis Sci; 1995 Aug; 36(9):1804-17. PubMed ID: 7635655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dehydroascorbate uptake activity correlates with cell growth and cell division of tobacco bright yellow-2 cell cultures.
    Horemans N; Potters G; De Wilde L; Caubergs RJ
    Plant Physiol; 2003 Sep; 133(1):361-7. PubMed ID: 12970501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds.
    Tommasi F; Paciolla C; de Pinto MC; De Gara L
    J Exp Bot; 2001 Aug; 52(361):1647-54. PubMed ID: 11479329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The catalytic mechanism of the glutathione-dependent dehydroascorbate reductase activity of thioltransferase (glutaredoxin).
    Washburn MP; Wells WW
    Biochemistry; 1999 Jan; 38(1):268-74. PubMed ID: 9890907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dehydroascorbate and dehydroascorbate reductase are phantom indicators of oxidative stress in plants.
    Morell S; Follmann H; De Tullio M; Häberlein I
    FEBS Lett; 1997 Sep; 414(3):567-70. PubMed ID: 9323037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short- and long-term effects of dehydroascorbate in Lupinus albus and Allium cepa roots.
    Paciolla C; De Tullio MC; Chiappetta A; Innocenti AM; Bitonti MB; Liso R; Arrigoni O
    Plant Cell Physiol; 2001 Aug; 42(8):857-63. PubMed ID: 11522912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Jasmonic acid-induced hydrogen sulfide activates MEK1/2 in regulating the redox state of ascorbate in
    Shan C; Sun H; Zhou Y; Wang W
    Plant Signal Behav; 2019; 14(8):1629265. PubMed ID: 31187685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dehydroascorbate reduction.
    Wells WW; Xu DP
    J Bioenerg Biomembr; 1994 Aug; 26(4):369-77. PubMed ID: 7844111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ascorbate system in plant development.
    Arrigoni O
    J Bioenerg Biomembr; 1994 Aug; 26(4):407-19. PubMed ID: 7844116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-dependent ascorbate recycling in human erythrocytes: role of thioredoxin reductase.
    Mendiratta S; Qu ZC; May JM
    Free Radic Biol Med; 1998 Jul; 25(2):221-8. PubMed ID: 9667500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutathione-dependent dehydroascorbate reduction: a determinant of dehydroascorbate uptake by human polymorphonuclear leukocytes.
    Bigley R; Stankova L; Roos D; Loos J
    Enzyme; 1980; 25(3):200-4. PubMed ID: 7398612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quercetin prevents glutathione depletion induced by dehydroascorbic acid in rabbit red blood cells.
    Fiorani M; De Sanctis R; Menghinello P; Cucchiarini L; Cellini B; Dachà M
    Free Radic Res; 2001 Jun; 34(6):639-48. PubMed ID: 11697039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GSH is required to recycle ascorbic acid in cultured liver cell lines.
    Li X; Qu ZC; May JM
    Antioxid Redox Signal; 2001 Dec; 3(6):1089-97. PubMed ID: 11813982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of dehydroascorbate to ascorbate by the selenoenzyme thioredoxin reductase.
    May JM; Mendiratta S; Hill KE; Burk RF
    J Biol Chem; 1997 Sep; 272(36):22607-10. PubMed ID: 9278416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced activity of galactono-1,4-lactone dehydrogenase and ascorbate-glutathione cycle in mitochondria from complex III deficient Arabidopsis.
    Zsigmond L; Tomasskovics B; Deák V; Rigó G; Szabados L; Bánhegyi G; Szarka A
    Plant Physiol Biochem; 2011 Aug; 49(8):809-15. PubMed ID: 21601466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective microorganisms enhance the scavenging capacity of the ascorbate-glutathione cycle in common bean (Phaseolus vulgaris L.) plants grown in salty soils.
    Talaat NB
    Plant Physiol Biochem; 2014 Jul; 80():136-43. PubMed ID: 24755360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ascorbate and dehydroascorbate influence cell cycle progression in a tobacco cell suspension.
    Potters G; Horemans N; Caubergs RJ; Asard H
    Plant Physiol; 2000 Sep; 124(1):17-20. PubMed ID: 10982417
    [No Abstract]   [Full Text] [Related]  

  • 19. A Low Glutathione Redox State Couples with a Decreased Ascorbate Redox Ratio to Accelerate Flowering in Oncidium Orchid.
    Chin DC; Hsieh CC; Lin HY; Yeh KW
    Plant Cell Physiol; 2016 Feb; 57(2):423-36. PubMed ID: 26738548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential regulation of hydrogen peroxide and Fas-dependent apoptosis pathways by dehydroascorbate, the oxidized form of vitamin C.
    Puskas F; Gergely P; Niland B; Banki K; Perl A
    Antioxid Redox Signal; 2002 Jun; 4(3):357-69. PubMed ID: 12215204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.