BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 15047900)

  • 21. Characterization and physiological function of glutathione reductase in Euglena gracilis z.
    Shigeoka S; Onishi T; Nakano Y; Kitaoka S
    Biochem J; 1987 Mar; 242(2):511-5. PubMed ID: 3109393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Response of the ascorbate-glutathione cycle to re-aeration following hypoxia in lupine roots.
    Garnczarska M
    Plant Physiol Biochem; 2005 Jun; 43(6):583-90. PubMed ID: 15975806
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Requirement for GSH in recycling of ascorbic acid in endothelial cells.
    May JM; Qu Z; Li X
    Biochem Pharmacol; 2001 Oct; 62(7):873-81. PubMed ID: 11543722
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of nicosulfuron on growth, oxidative damage, and the ascorbate-glutathione pathway in paired nearly isogenic lines of waxy maize (Zea mays L.).
    Wang J; Zhong X; Li F; Shi Z
    Pestic Biochem Physiol; 2018 Feb; 145():108-117. PubMed ID: 29482726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dehydroascorbic acid prevents oxidative cell death through a glutathione pathway in primary astrocytes.
    Kim EJ; Park YG; Baik EJ; Jung SJ; Won R; Nahm TS; Lee BH
    J Neurosci Res; 2005 Mar; 79(5):670-9. PubMed ID: 15668957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of dehydroascorbate in disulfide bond formation.
    Saaranen MJ; Karala AR; Lappi AK; Ruddock LW
    Antioxid Redox Signal; 2010 Jan; 12(1):15-25. PubMed ID: 19686035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The pivotal function of dehydroascorbate reductase in glutathione homeostasis in plants.
    Ding H; Wang B; Han Y; Li S
    J Exp Bot; 2020 Jun; 71(12):3405-3416. PubMed ID: 32107543
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The mechanism of action of the nitrosourea anti-tumor drugs on thioredoxin reductase, glutathione reductase and ribonucleotide reductase.
    Schallreuter KU; Gleason FK; Wood JM
    Biochim Biophys Acta; 1990 Aug; 1054(1):14-20. PubMed ID: 2200526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hyperpolarized [1-13C]dehydroascorbate MR spectroscopy in a murine model of prostate cancer: comparison with 18F-FDG PET.
    Keshari KR; Sai V; Wang ZJ; Vanbrocklin HF; Kurhanewicz J; Wilson DM
    J Nucl Med; 2013 Jun; 54(6):922-8. PubMed ID: 23575993
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recycling of vitamin C from its oxidized forms by human endothelial cells.
    May JM; Qu ZC; Neel DR; Li X
    Biochim Biophys Acta; 2003 May; 1640(2-3):153-61. PubMed ID: 12729925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization and detection in cells of a novel adduct derived from the conjugation of glutathione and dehydroascorbate.
    Regulus P; Desilets JF; Klarskov K; Wagner JR
    Free Radic Biol Med; 2010 Sep; 49(6):984-91. PubMed ID: 20541006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radiation response of cells during altered protein thiol redox.
    Biaglow JE; Ayene IS; Koch CJ; Donahue J; Stamato TD; Mieyal JJ; Tuttle SW
    Radiat Res; 2003 Apr; 159(4):484-94. PubMed ID: 12643793
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The relationship between leaf rolling and ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe setosa subjected to drought stress.
    Saruhan N; Terzi R; Saglam A; Kadioglu A
    Biol Res; 2009; 42(3):315-26. PubMed ID: 19915740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stimulation of the pentose phosphate pathway and glutathione levels by dehydroascorbate, the oxidized form of vitamin C.
    Puskas F; Gergely P; Banki K; Perl A
    FASEB J; 2000 Jul; 14(10):1352-61. PubMed ID: 10877828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The oxidized form of vitamin C, dehydroascorbic acid, regulates neuronal energy metabolism.
    Cisternas P; Silva-Alvarez C; Martínez F; Fernandez E; Ferrada L; Oyarce K; Salazar K; Bolaños JP; Nualart F
    J Neurochem; 2014 May; 129(4):663-71. PubMed ID: 24460956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism.
    Aravind P; Prasad MN
    Plant Physiol Biochem; 2005 Feb; 43(2):107-16. PubMed ID: 15820657
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The presence of dehydroascorbate and dehydroascorbate reductase in plant tissues.
    Foyer CH; Mullineaux PM
    FEBS Lett; 1998 Apr; 425(3):528-9. PubMed ID: 9563527
    [No Abstract]   [Full Text] [Related]  

  • 38. Assessing Oxidative Stress in Tumors by Measuring the Rate of Hyperpolarized [1-13C]Dehydroascorbic Acid Reduction Using 13C Magnetic Resonance Spectroscopy.
    Timm KN; Hu DE; Williams M; Wright AJ; Kettunen MI; Kennedy BWC; Larkin TJ; Dzien P; Marco-Rius I; Bohndiek SE; Brindle KM
    J Biol Chem; 2017 Feb; 292(5):1737-1748. PubMed ID: 27994059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells.
    Hoque MA; Banu MN; Okuma E; Amako K; Nakamura Y; Shimoishi Y; Murata Y
    J Plant Physiol; 2007 Nov; 164(11):1457-68. PubMed ID: 17223225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron paramagnetic resonance studies on nitroxide radical 2,2,5,5-tetramethyl-4-piperidin-1-oxyl (TEMPO) redox reactions in human skin.
    Fuchs J; Groth N; Herrling T; Zimmer G
    Free Radic Biol Med; 1997; 22(6):967-76. PubMed ID: 9034235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.