These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 15048128)
1. PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3. Remy I; Montmarquette A; Michnick SW Nat Cell Biol; 2004 Apr; 6(4):358-65. PubMed ID: 15048128 [TBL] [Abstract][Full Text] [Related]
2. IGF-binding proteins mediate TGF-beta 1-induced apoptosis in bovine mammary epithelial BME-UV1 cells. Gajewska M; Motyl T Comp Biochem Physiol C Toxicol Pharmacol; 2004 Oct; 139(1-3):65-75. PubMed ID: 15556067 [TBL] [Abstract][Full Text] [Related]
3. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Conery AR; Cao Y; Thompson EA; Townsend CM; Ko TC; Luo K Nat Cell Biol; 2004 Apr; 6(4):366-72. PubMed ID: 15104092 [TBL] [Abstract][Full Text] [Related]
4. TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. Nakao A; Imamura T; Souchelnytskyi S; Kawabata M; Ishisaki A; Oeda E; Tamaki K; Hanai J; Heldin CH; Miyazono K; ten Dijke P EMBO J; 1997 Sep; 16(17):5353-62. PubMed ID: 9311995 [TBL] [Abstract][Full Text] [Related]
5. Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Zhang Y; Feng XH; Derynck R Nature; 1998 Aug; 394(6696):909-13. PubMed ID: 9732876 [TBL] [Abstract][Full Text] [Related]
6. Suppression of transforming growth factor-beta-induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway. Chen RH; Su YH; Chuang RL; Chang TY Oncogene; 1998 Oct; 17(15):1959-68. PubMed ID: 9788439 [TBL] [Abstract][Full Text] [Related]
7. Cyclic adenosine 3',5'-monophosphate-elevating agents inhibit transforming growth factor-beta-induced SMAD3/4-dependent transcription via a protein kinase A-dependent mechanism. Schiller M; Verrecchia F; Mauviel A Oncogene; 2003 Dec; 22(55):8881-90. PubMed ID: 14654784 [TBL] [Abstract][Full Text] [Related]
8. Tenascin-C upregulation by transforming growth factor-beta in human dermal fibroblasts involves Smad3, Sp1, and Ets1. Jinnin M; Ihn H; Asano Y; Yamane K; Trojanowska M; Tamaki K Oncogene; 2004 Mar; 23(9):1656-67. PubMed ID: 15001984 [TBL] [Abstract][Full Text] [Related]
9. Interaction between Smad anchor for receptor activation and Smad3 is not essential for TGF-beta/Smad3-mediated signaling. Goto D; Nakajima H; Mori Y; Kurasawa K; Kitamura N; Iwamoto I Biochem Biophys Res Commun; 2001 Mar; 281(5):1100-5. PubMed ID: 11243848 [TBL] [Abstract][Full Text] [Related]
10. Smad3/AP-1 interactions control transcriptional responses to TGF-beta in a promoter-specific manner. Verrecchia F; Vindevoghel L; Lechleider RJ; Uitto J; Roberts AB; Mauviel A Oncogene; 2001 Jun; 20(26):3332-40. PubMed ID: 11423983 [TBL] [Abstract][Full Text] [Related]
11. Insulin-like growth factor-I inhibits transcriptional responses of transforming growth factor-beta by phosphatidylinositol 3-kinase/Akt-dependent suppression of the activation of Smad3 but not Smad2. Song K; Cornelius SC; Reiss M; Danielpour D J Biol Chem; 2003 Oct; 278(40):38342-51. PubMed ID: 12876289 [TBL] [Abstract][Full Text] [Related]
12. Interaction of smad3 with a proximal smad-binding element of the human alpha2(I) procollagen gene promoter required for transcriptional activation by TGF-beta. Chen SJ; Yuan W; Lo S; Trojanowska M; Varga J J Cell Physiol; 2000 Jun; 183(3):381-92. PubMed ID: 10797313 [TBL] [Abstract][Full Text] [Related]
13. Differential regulation of TGF-beta signaling through Smad2, Smad3 and Smad4. Kretschmer A; Moepert K; Dames S; Sternberger M; Kaufmann J; Klippel A Oncogene; 2003 Oct; 22(43):6748-63. PubMed ID: 14555988 [TBL] [Abstract][Full Text] [Related]
14. TGF-beta inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Liu D; Black BL; Derynck R Genes Dev; 2001 Nov; 15(22):2950-66. PubMed ID: 11711431 [TBL] [Abstract][Full Text] [Related]
15. Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. Zavadil J; Cermak L; Soto-Nieves N; Böttinger EP EMBO J; 2004 Mar; 23(5):1155-65. PubMed ID: 14976548 [TBL] [Abstract][Full Text] [Related]
17. CHIP controls the sensitivity of transforming growth factor-beta signaling by modulating the basal level of Smad3 through ubiquitin-mediated degradation. Xin H; Xu X; Li L; Ning H; Rong Y; Shang Y; Wang Y; Fu XY; Chang Z J Biol Chem; 2005 May; 280(21):20842-50. PubMed ID: 15781469 [TBL] [Abstract][Full Text] [Related]
18. TGF-beta-induced phosphorylation of Smad3 regulates its interaction with coactivator p300/CREB-binding protein. Shen X; Hu PP; Liberati NT; Datto MB; Frederick JP; Wang XF Mol Biol Cell; 1998 Dec; 9(12):3309-19. PubMed ID: 9843571 [TBL] [Abstract][Full Text] [Related]
19. Novel roles of Akt and mTOR in suppressing TGF-beta/ALK5-mediated Smad3 activation. Song K; Wang H; Krebs TL; Danielpour D EMBO J; 2006 Jan; 25(1):58-69. PubMed ID: 16362038 [TBL] [Abstract][Full Text] [Related]
20. Interaction of the Ski oncoprotein with Smad3 regulates TGF-beta signaling. Sun Y; Liu X; Eaton EN; Lane WS; Lodish HF; Weinberg RA Mol Cell; 1999 Oct; 4(4):499-509. PubMed ID: 10549282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]