These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 15048486)

  • 1. Scanning Kelvin Microscope: a new method for surface investigations.
    Ren J; Liess HD; Mäckel R; Baumgärtner H
    Anal Bioanal Chem; 1995 Oct; 353(3-4):303-6. PubMed ID: 15048486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the relevance of the atomic-scale contact potential difference by amplitude-modulation and frequency-modulation Kelvin probe force microscopy.
    Nony L; Bocquet F; Loppacher C; Glatzel T
    Nanotechnology; 2009 Jul; 20(26):264014. PubMed ID: 19509441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free and high-resolution protein/DNA nanoarray analysis using Kelvin probe force microscopy.
    Sinensky AK; Belcher AM
    Nat Nanotechnol; 2007 Oct; 2(10):653-9. PubMed ID: 18654392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated scanning Kelvin probe-scanning electrochemical microscope system: development and first applications.
    Maljusch A; Schönberger B; Lindner A; Stratmann M; Rohwerder M; Schuhmann W
    Anal Chem; 2011 Aug; 83(15):6114-20. PubMed ID: 21675763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating and interpreting Kelvin probe force microscopy images on dielectrics with boundary integral equations.
    Shen Y; Barnett DM; Pinsky PM
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023711. PubMed ID: 18315309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A low-temperature high resolution scanning tunneling microscope with a three-dimensional magnetic vector field operating in ultrahigh vacuum.
    Mashoff T; Pratzer M; Morgenstern M
    Rev Sci Instrum; 2009 May; 80(5):053702. PubMed ID: 19485511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of surface topography on Kelvin probe force microscopy.
    Sadewasser S; Leendertz C; Streicher F; Lux-Steiner MCh
    Nanotechnology; 2009 Dec; 20(50):505503. PubMed ID: 19934483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-micrometre imaging of metal surface corrosion by scanning Kelvin nanoprobe.
    Cheran LE; Thompson M
    Analyst; 2004 May; 129(5):406-9. PubMed ID: 15116231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on three dimensional machining effects using atomic force microscope.
    Mao YT; Kuo KC; Tseng CE; Huang JY; Lai YC; Yen JY; Lee CK; Chuang WL
    Rev Sci Instrum; 2009 Jun; 80(6):065105. PubMed ID: 19566224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kelvin probe force microscopy in nonpolar liquids.
    Domanski AL; Sengupta E; Bley K; Untch MB; Weber SA; Landfester K; Weiss CK; Butt HJ; Berger R
    Langmuir; 2012 Oct; 28(39):13892-9. PubMed ID: 22946889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface photovoltage spectroscopy in a Kelvin probe force microscope under ultrahigh vacuum.
    Streicher F; Sadewasser S; Lux-Steiner MCh
    Rev Sci Instrum; 2009 Jan; 80(1):013907. PubMed ID: 19191447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-probing of the membrane dynamics of rat pheochromocytoma by near-field optics.
    Piga R; Micheletto R; Kawakami Y
    Biophys Chem; 2005 Sep; 117(2):141-6. PubMed ID: 15923074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variable-temperature independently driven four-tip scanning tunneling microscope.
    Hobara R; Nagamura N; Hasegawa S; Matsuda I; Yamamoto Y; Miyatake Y; Nagamura T
    Rev Sci Instrum; 2007 May; 78(5):053705. PubMed ID: 17552823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A scanning Hall probe microscope for high resolution magnetic imaging down to 300 mK.
    Khotkevych VV; Milosević MV; Bending SJ
    Rev Sci Instrum; 2008 Dec; 79(12):123708. PubMed ID: 19123570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a scanning microscopy by total internal reflection coupled with thermal lens spectroscopy.
    Shimosaka T; Iwamoto K; Izako M; Suzuki A; Uchiyama K; Hobo T
    Micron; 2004; 35(4):297-302. PubMed ID: 15003617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the local contact potential difference of PTCDA on NaCl: a comparison of techniques.
    Burke SA; LeDue JM; Miyahara Y; Topple JM; Fostner S; Grütter P
    Nanotechnology; 2009 Jul; 20(26):264012. PubMed ID: 19509452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of probe-to-probe approach method for an independently controlled dual-probe scanning tunneling microscope.
    Matsui A; Shigeta Y
    Rev Sci Instrum; 2007 Oct; 78(10):106107. PubMed ID: 17979463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. White light scanning interferometry adapted for large-area optical analysis of thick and rough hydroxyapatite layers.
    Pecheva E; Montgomery P; Montaner D; Pramatarova L
    Langmuir; 2007 Mar; 23(7):3912-8. PubMed ID: 17295521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray excited optical luminescence detection by scanning near-field optical microscope: a new tool for nanoscience.
    Larcheri S; Rocca F; Jandard F; Pailharey D; Graziola R; Kuzmin A; Purans J
    Rev Sci Instrum; 2008 Jan; 79(1):013702. PubMed ID: 18248034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.