BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 15048778)

  • 41. Water, shape recognition, salt bridges, and cation-pi interactions differentiate peptide recognition of the HIV rev-responsive element.
    Michael LA; Chenault JA; Miller BR; Knolhoff AM; Nagan MC
    J Mol Biol; 2009 Sep; 392(3):774-86. PubMed ID: 19631217
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exploring the counterion atmosphere around DNA: what can be learned from molecular dynamics simulations?
    Rueda M; Cubero E; Laughton CA; Orozco M
    Biophys J; 2004 Aug; 87(2):800-11. PubMed ID: 15298889
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Competitive Na(+) and Rb(+) binding in the minor groove of DNA.
    Cesare Marincola F; Denisov VP; Halle B
    J Am Chem Soc; 2004 Jun; 126(21):6739-50. PubMed ID: 15161302
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular dynamics simulations and thermodynamics analysis of DNA-drug complexes. Minor groove binding between 4',6-diamidino-2-phenylindole and DNA duplexes in solution.
    Spacková N; Cheatham TE; Ryjácek F; Lankas F; Van Meervelt L; Hobza P; Sponer J
    J Am Chem Soc; 2003 Feb; 125(7):1759-69. PubMed ID: 12580601
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural properties of polymeric DNA from molecular dynamics simulations.
    Samanta S; Mukherjee S; Chakrabarti J; Bhattacharyya D
    J Chem Phys; 2009 Mar; 130(11):115103. PubMed ID: 19317569
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biophysical characterization of the DNA interaction with the biogenic polyamine putrescine: A single molecule study.
    Publio BC; Moura TA; Lima CHM; Rocha MS
    Int J Biol Macromol; 2018 Jun; 112():175-178. PubMed ID: 29414728
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surprising roles of electrostatic interactions in DNA-ligand complexes.
    Howerton SB; Nagpal A; Williams LD
    Biopolymers; 2003 May; 69(1):87-99. PubMed ID: 12717724
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DNA triple helix stabilization by bisguanidinyl analogues of biogenic polyamines.
    Pallan PS; Ganesh KN
    Biochem Biophys Res Commun; 1996 May; 222(2):416-20. PubMed ID: 8670220
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dramatic change in the tertiary structure of giant DNA without distortion of the secondary structure caused by pteridine-polyamine conjugates.
    Chen N; Murata S; Yoshikawa K
    Chemistry; 2005 Aug; 11(16):4835-40. PubMed ID: 15954150
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DNA and its counterions: a molecular dynamics study.
    Várnai P; Zakrzewska K
    Nucleic Acids Res; 2004; 32(14):4269-80. PubMed ID: 15304564
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interaction between the Z-type DNA duplex and 1,3-propanediamine: crystal structure of d(CACGTG)2 at 1.2 A resolution.
    Narayana N; Shamala N; Ganesh KN; Viswamitra MA
    Biochemistry; 2006 Jan; 45(4):1200-11. PubMed ID: 16430216
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular dynamics simulations of papilloma virus E2 DNA sequences: dynamical models for oligonucleotide structures in solution.
    Byun KS; Beveridge DL
    Biopolymers; 2004 Feb; 73(3):369-79. PubMed ID: 14755573
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure of B-DNA with cations tethered in the major groove.
    Moulaei T; Maehigashi T; Lountos GT; Komeda S; Watkins D; Stone MP; Marky LA; Li JS; Gold B; Williams LD
    Biochemistry; 2005 May; 44(20):7458-68. PubMed ID: 15895989
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A study of the quadrupolar NMR splittings of 7Li+, 23Na+, and 133Cs+ counterions in macroscopically oriented DNA fibers.
    Schultz J; Nordenskiöld L; Rupprecht A
    Biopolymers; 1992 Dec; 32(12):1631-42. PubMed ID: 1472648
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The ability of cystamine to bind DNA.
    Allegra P; Amodeo E; Colombatto S; Solinas SP
    Amino Acids; 2002; 22(2):155-66. PubMed ID: 12395183
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Interaction of polyamines with chromatin and DNA: formation of compact structures].
    Smirnov IV; Dimitrov SI; Makarov VL
    Mol Biol (Mosk); 1987; 21(5):1411-21. PubMed ID: 3683384
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pattern preferences of DNA nucleotide motifs by polyamines putrescine2+, spermidine3+ and spermine4.
    Perepelytsya S; Uličný J; Laaksonen A; Mocci F
    Nucleic Acids Res; 2019 Jul; 47(12):6084-6097. PubMed ID: 31114917
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Folding of the Tetrahymena ribozyme by polyamines: importance of counterion valence and size.
    Koculi E; Lee NK; Thirumalai D; Woodson SA
    J Mol Biol; 2004 Jul; 341(1):27-36. PubMed ID: 15312760
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Non-Watson-Crick basepairing and hydration in RNA motifs: molecular dynamics of 5S rRNA loop E.
    Réblová K; Spacková N; Stefl R; Csaszar K; Koca J; Leontis NB; Sponer J
    Biophys J; 2003 Jun; 84(6):3564-82. PubMed ID: 12770867
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of ions, hydration, and the transcriptional inhibitor P4N on the conformations of the Sp1 binding site.
    Dohm JA; Hsu MH; Hwu JR; Huang RC; Moudrianakis EN; Lattman EE; Gittis AG
    J Mol Biol; 2005 Jun; 349(4):731-44. PubMed ID: 15896803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.