These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 15049302)

  • 1. Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance gene.
    Leister D
    Trends Genet; 2004 Mar; 20(3):116-22. PubMed ID: 15049302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution.
    Richly E; Kurth J; Leister D
    Mol Biol Evol; 2002 Jan; 19(1):76-84. PubMed ID: 11752192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, function and evolution of plant disease resistance genes.
    Ellis J; Dodds P; Pryor T
    Curr Opin Plant Biol; 2000 Aug; 3(4):278-84. PubMed ID: 10873844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The genetic architecture of resistance.
    Young ND
    Curr Opin Plant Biol; 2000 Aug; 3(4):285-90. PubMed ID: 10873848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome survey of resistance gene analogs in sugarcane: genomic features and differential expression of the innate immune system from a smut-resistant genotype.
    Rody HVS; Bombardelli RGH; Creste S; Camargo LEA; Van Sluys MA; Monteiro-Vitorello CB
    BMC Genomics; 2019 Nov; 20(1):809. PubMed ID: 31694536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana.
    Mondragón-Palomino M; Meyers BC; Michelmore RW; Gaut BS
    Genome Res; 2002 Sep; 12(9):1305-15. PubMed ID: 12213767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana.
    Cannon SB; Mitra A; Baumgarten A; Young ND; May G
    BMC Plant Biol; 2004 Jun; 4():10. PubMed ID: 15171794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The evolution of plant disease resistance gene].
    Zhuang J; Liu ZX
    Yi Chuan; 2004 Nov; 26(6):962-8. PubMed ID: 15653462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Downy mildew (Pl ( 8 ) and Pl ( 14 )) and rust (R ( Adv )) resistance genes reside in close proximity to tandemly duplicated clusters of non-TIR-like NBS-LRR-encoding genes on sunflower chromosomes 1 and 13.
    Bachlava E; Radwan OE; Abratti G; Tang S; Gao W; Heesacker AF; Bazzalo ME; Zambelli A; Leon AJ; Knapp SJ
    Theor Appl Genet; 2011 Apr; 122(6):1211-21. PubMed ID: 21293840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis.
    Meyers BC; Kozik A; Griego A; Kuang H; Michelmore RW
    Plant Cell; 2003 Apr; 15(4):809-34. PubMed ID: 12671079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different scales of gene duplications occurring at different times have jointly shaped the NBS-LRR genes in Prunus species.
    Zhong Y; Chen Z; Cheng ZM
    Mol Genet Genomics; 2022 Jan; 297(1):263-276. PubMed ID: 35031863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two Central Asian grapevines.
    Coleman C; Copetti D; Cipriani G; Hoffmann S; Kozma P; Kovács L; Morgante M; Testolin R; Di Gaspero G
    BMC Genet; 2009 Dec; 10():89. PubMed ID: 20042081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization and molecular evolution of a disease-resistance gene cluster in coffee trees.
    Ribas AF; Cenci A; Combes MC; Etienne H; Lashermes P
    BMC Genomics; 2011 May; 12():240. PubMed ID: 21575174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolution of resistance genes in multi-protein plant resistance systems.
    Friedman AR; Baker BJ
    Curr Opin Genet Dev; 2007 Dec; 17(6):493-9. PubMed ID: 17942300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes.
    Zhou T; Wang Y; Chen JQ; Araki H; Jing Z; Jiang K; Shen J; Tian D
    Mol Genet Genomics; 2004 May; 271(4):402-15. PubMed ID: 15014983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and evolution of plant disease resistance genes.
    Lehmann P
    J Appl Genet; 2002; 43(4):403-14. PubMed ID: 12441626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncovering the dynamic evolution of nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in Brassicaceae.
    Zhang YM; Shao ZQ; Wang Q; Hang YY; Xue JY; Wang B; Chen JQ
    J Integr Plant Biol; 2016 Feb; 58(2):165-77. PubMed ID: 25926337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Illegitimate recombination is a major evolutionary mechanism for initiating size variation in plant resistance genes.
    Wicker T; Yahiaoui N; Keller B
    Plant J; 2007 Aug; 51(4):631-41. PubMed ID: 17573804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-level evolution of resistance genes in Arabidopsis thaliana.
    Baumgarten A; Cannon S; Spangler R; May G
    Genetics; 2003 Sep; 165(1):309-19. PubMed ID: 14504238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lineage-specific duplications of NBS-LRR genes occurring before the divergence of six Fragaria species.
    Zhong Y; Zhang X; Cheng ZM
    BMC Genomics; 2018 Feb; 19(1):128. PubMed ID: 29422035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.