These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 15049356)

  • 1. Assessing Secchi and photic zone depth in the Baltic Sea from satellite data.
    Kratzer S; Håkansson B; Sahlin C
    Ambio; 2003 Dec; 32(8):577-85. PubMed ID: 15049356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Sentinel-3A OLCI Products Derived Using the Case-2 Regional CoastColour Processor over the Baltic Sea.
    Kyryliuk D; Kratzer S
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31430993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of underwater visibility in coastal and inland waters using remote sensing data.
    Kulshreshtha A; Shanmugam P
    Environ Monit Assess; 2017 Apr; 189(4):199. PubMed ID: 28361489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between colored dissolved organic matter and dissolved organic carbon in different coastal gradients of the Baltic Sea.
    Harvey ET; Kratzer S; Andersson A
    Ambio; 2015 Jun; 44 Suppl 3(Suppl 3):392-401. PubMed ID: 26022322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery.
    Giardino C; Pepe M; Brivio PA; Ghezzi P; Zilioli E
    Sci Total Environ; 2001 Mar; 268(1-3):19-29. PubMed ID: 11315741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SeaWiFs satellite data analysis of Black Sea water discharge pattern into the Aegean Sea.
    Jönsson L
    Water Sci Technol; 2002; 46(8):195-202. PubMed ID: 12420983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trophic state index of a lake system using IRS (P6-LISS III) satellite imagery.
    Sheela AM; Letha J; Joseph S; Ramachandran KK; Sanalkumar SP
    Environ Monit Assess; 2011 Jun; 177(1-4):575-92. PubMed ID: 20835922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shift in apparent contrast of disc at Secchi disc depth in coastal sea areas.
    Arakawa H; Inada M; Choi S; Narita M
    Environ Monit Assess; 2013 Mar; 185(3):2307-13. PubMed ID: 22688411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optical method to assess water clarity in coastal waters.
    Kulshreshtha A; Shanmugam P
    Environ Monit Assess; 2015 Dec; 187(12):742. PubMed ID: 26559556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remotely sensed assessment of water quality levels in the Pearl River Estuary, China.
    Chen C; Tang S; Pan Z; Zhan H; Larson M; Jönsson L
    Mar Pollut Bull; 2007 Aug; 54(8):1267-72. PubMed ID: 17537463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplatform optical monitoring of eutrophication in temporally and spatially variable lakes.
    Vos RJ; Hakvoort JH; Jordans RW; Ibelings BW
    Sci Total Environ; 2003 Aug; 312(1-3):221-43. PubMed ID: 12873412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The status of brown macroalgae Fucus spp. and its relation to environmental variation in the Finnish marine area, northern Baltic Sea.
    Rinne H; Salovius-Laurén S
    Ambio; 2020 Jan; 49(1):118-129. PubMed ID: 30945146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of satellite imagery to assess the trophic state of Miyun Reservoir, Beijing, China.
    Zhengjun W; Jianming H; Guisen D
    Environ Pollut; 2008 Sep; 155(1):13-9. PubMed ID: 18155332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water quality assessment at Omerli Dam using remote sensing techniques.
    Alparslan E; Aydöner C; Tufekci V; Tüfekci H
    Environ Monit Assess; 2007 Dec; 135(1-3):391-8. PubMed ID: 17345006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eutrophication trends in the coastal region of the Great Tokyo area based on long-term trends of Secchi depth.
    Akada H; Kodama T; Yamaguchi T
    PeerJ; 2023; 11():e15764. PubMed ID: 37529211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental impacts of grey water discharge from ships in the Baltic Sea.
    Ytreberg E; Eriksson M; Maljutenko I; Jalkanen JP; Johansson L; Hassellöv IM; Granhag L
    Mar Pollut Bull; 2020 Mar; 152():110891. PubMed ID: 32479276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication.
    Zhang Y; Zhou Y; Shi K; Qin B; Yao X; Zhang Y
    Water Res; 2018 Mar; 131():255-263. PubMed ID: 29304379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eutrophication assessment of the Baltic Sea Protected Areas by available data and GIS technologies.
    Ranft S; Pesch R; Schröder W; Boedeker D; Paulomäki H; Fagerli H
    Mar Pollut Bull; 2011; 63(5-12):209-14. PubMed ID: 21683967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring biological effects of pollution in the Baltic Sea: neglected--but still wanted?
    Lehtonen KK; Schiedek D
    Mar Pollut Bull; 2006; 53(8-9):377-86. PubMed ID: 16413586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.