BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 15049623)

  • 1. Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH(*) radical in alcoholic solutions.
    Foti MC; Daquino C; Geraci C
    J Org Chem; 2004 Apr; 69(7):2309-14. PubMed ID: 15049623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidant properties of phenols.
    Foti MC
    J Pharm Pharmacol; 2007 Dec; 59(12):1673-85. PubMed ID: 18053330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abnormal solvent effects on hydrogen atom abstractions. 1. The reactions of phenols with 2,2-diphenyl-1-picrylhydrazyl (dpph*) in alcohols.
    Litwinienko G; Ingold KU
    J Org Chem; 2003 May; 68(9):3433-8. PubMed ID: 12713343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative kinetic analysis of hydrogen transfer reactions from dietary polyphenols to the DPPH radical.
    Goupy P; Dufour C; Loonis M; Dangles O
    J Agric Food Chem; 2003 Jan; 51(3):615-22. PubMed ID: 12537431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentration-dependent HAT/ET mechanism of the reaction of phenols with 2,2-diphenyl-1-picrylhydrazyl (dpph˙) in methanol.
    Przybylski P; Konopko A; Łętowski P; Jodko-Piórecka K; Litwinienko G
    RSC Adv; 2022 Mar; 12(13):8131-8136. PubMed ID: 35424731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Kinetic Approach of DPPH Free Radical Assay of Ferulate-Based Protic Ionic Liquids (PILs).
    Ahmad NA; Jumbri K; Ramli A; Abd Ghani N; Ahmad H; Lim JW
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30563037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the structure-antioxidant activity relationships of four cinnamic acids porous starch esters.
    Li H; Ma Y; Gao X; Chen G; Wang Z
    Carbohydr Polym; 2021 Mar; 256():117428. PubMed ID: 33483017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer.
    Litwinienko G; Ingold KU
    J Org Chem; 2004 Sep; 69(18):5888-96. PubMed ID: 15373474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of curcumin oxidation by 2,2-diphenyl-1-picrylhydrazyl (DPPH˙): an interesting case of separated coupled proton-electron transfer.
    Foti MC; Slavova-Kazakova A; Rocco C; Kancheva VD
    Org Biomol Chem; 2016 Sep; 14(35):8331-7. PubMed ID: 27530442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant properties in a non-polar environment of difluoromethyl bioisosteres of methyl hydroxycinnamates.
    Martínez MD; Luna L; Tesio AY; Feresin GE; Durán FJ; Burton G
    J Pharm Pharmacol; 2016 Feb; 68(2):233-44. PubMed ID: 26773438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competitive kinetics in free radical reactions of cinnamic acid derivatives. Influence of phenoxyl radicals reactions.
    López-Alarcón C; Aspée A; Lissi E
    Free Radic Res; 2007 Oct; 41(10):1189-94. PubMed ID: 17886041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and stoichiometry of the reaction of chlorogenic acid and its alkyl esters against the DPPH radical.
    López-Giraldo LJ; Laguerre M; Lecomte J; Figueroa-Espinoza MC; Baréa B; Weiss J; Decker EA; Villeneuve P
    J Agric Food Chem; 2009 Feb; 57(3):863-70. PubMed ID: 19143487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of the oxidation of quercetin by 2,2-diphenyl-1-picrylhydrazyl (dpph•).
    Foti MC; Daquino C; DiLabio GA; Ingold KU
    Org Lett; 2011 Sep; 13(18):4826-9. PubMed ID: 21846127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antiradical and antioxidant activities of new bio-antioxidants.
    Kancheva VD; Saso L; Angelova SE; Foti MC; Slavova-Kasakova A; Daquino C; Enchev V; Firuzi O; Nechev J
    Biochimie; 2012 Feb; 94(2):403-15. PubMed ID: 21884748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radical scavenging mechanism of phenol carboxylic acids: reaction of protocatechuic esters.
    Saito S; Okamoto Y; Kawabata J
    Biofactors; 2004; 21(1-4):321-3. PubMed ID: 15630219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and Evaluation of Antioxidant Activities of Novel Hydroxyalkyl Esters and Bis-Aryl Esters Based on Sinapic and Caffeic Acids.
    Laguna O; Durand E; Baréa B; Dauguet S; Fine F; Villeneuve P; Lecomte J
    J Agric Food Chem; 2020 Sep; 68(35):9308-9318. PubMed ID: 32786829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abnormal solvent effects on hydrogen atom abstraction. 3. Novel kinetics in sequential proton loss electron transfer chemistry.
    Litwinienko G; Ingold KU
    J Org Chem; 2005 Oct; 70(22):8982-90. PubMed ID: 16238337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkyl esters of hydroxycinnamic acids with improved antioxidant activity and lipophilicity protect PC12 cells against oxidative stress.
    Garrido J; Gaspar A; Garrido EM; Miri R; Tavakkoli M; Pourali S; Saso L; Borges F; Firuzi O
    Biochimie; 2012 Apr; 94(4):961-7. PubMed ID: 22210493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Antioxidant Potential of White Wines Relies on the Chemistry of Sulfur-Containing Compounds: An Optimized DPPH Assay.
    Romanet R; Coelho C; Liu Y; Bahut F; Ballester J; Nikolantonaki M; Gougeon RD
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30959818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of alcoholic solvents on antiradical abilities of protocatechuic acid and its alkyl esters.
    Saito S; Okamoto Y; Kawabata J
    Biosci Biotechnol Biochem; 2004 Jun; 68(6):1221-7. PubMed ID: 15215584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.