BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 15049702)

  • 1. Evidence that NiNi acetyl-CoA synthase is active and that the CuNi enzyme is not.
    Seravalli J; Xiao Y; Gu W; Cramer SP; Antholine WE; Krymov V; Gerfen GJ; Ragsdale SW
    Biochemistry; 2004 Apr; 43(13):3944-55. PubMed ID: 15049702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional copper at the acetyl-CoA synthase active site.
    Seravalli J; Gu W; Tam A; Strauss E; Begley TP; Cramer SP; Ragsdale SW
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3689-94. PubMed ID: 12589021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A functional Ni-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans.
    Svetlitchnyi V; Dobbek H; Meyer-Klaucke W; Meins T; Thiele B; Römer P; Huber R; Meyer O
    Proc Natl Acad Sci U S A; 2004 Jan; 101(2):446-51. PubMed ID: 14699043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-metal bonds in biology.
    Lindahl PA
    J Inorg Biochem; 2012 Jan; 106(1):172-8. PubMed ID: 22119810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase.
    Drennan CL; Heo J; Sintchak MD; Schreiter E; Ludden PW
    Proc Natl Acad Sci U S A; 2001 Oct; 98(21):11973-8. PubMed ID: 11593006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes.
    Adam PS; Borrel G; Gribaldo S
    Proc Natl Acad Sci U S A; 2018 Feb; 115(6):E1166-E1173. PubMed ID: 29358391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An alcove at the acetyl-CoA synthase nickel active site is required for productive substrate CO binding and anaerobic carbon fixation.
    Wiley S; Griffith C; Eckert P; Mueller AP; Nogle R; Simpson SD; Köpke M; Can M; Sarangi R; Kubarych K; Ragsdale SW
    J Biol Chem; 2024 Jun; ():107503. PubMed ID: 38944127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalysis at a dinuclear [CuSMo(==O)OH] cluster in a CO dehydrogenase resolved at 1.1-A resolution.
    Dobbek H; Gremer L; Kiefersauer R; Huber R; Meyer O
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):15971-6. PubMed ID: 12475995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nickel-binding proteins.
    Wattt RK; Ludden PW
    Cell Mol Life Sci; 1999 Nov; 56(7-8):604-25. PubMed ID: 11212309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO Oxidation Mechanism of Silver-Substituted Mo/Cu CO-Dehydrogenase - Analogies and Differences to the Native Enzyme.
    Rovaletti A; Moro G; Cosentino U; Ryde U; Greco C
    Chemphyschem; 2024 Jul; 25(13):e202400293. PubMed ID: 38631392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site specific redox properties in ligand differentiated di-nickel complexes inspired by the acetyl CoA synthase active site.
    Quiroz M; Jana M; Liu K; Bhuvanesh N; Hall MB; Darensbourg MY
    Dalton Trans; 2024 Apr; 53(17):7414-7423. PubMed ID: 38591102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into the function and evolution of the Wood-Ljungdahl pathway in Actinobacteria.
    Jiao JY; Fu L; Hua ZS; Liu L; Salam N; Liu PF; Lv AP; Wu G; Xian WD; Zhu Q; Zhou EM; Fang BZ; Oren A; Hedlund BP; Jiang HC; Knight R; Cheng L; Li WJ
    ISME J; 2021 Oct; 15(10):3005-3018. PubMed ID: 33953361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tridentate N(2)S ligand from 2,2'-dithiodibenzaldehyde and N,N-dimethylethylenediamine: Synthesis, structure, and characterization of a Ni(II) complex with relevance to Ni Superoxide Dismutase.
    Zimmerman JR; Smucker BW; Dain RP; Vanstipdonk MJ; Eichhorn DM
    Inorganica Chim Acta; 2011 Jul; 373(1):54-61. PubMed ID: 21666847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CuNi sulphidation maximizes MOR activity by expanding the accessibility of active sites!
    Arulraj R; Eswaran K; C M SF; Murugesan R; Peters S; Maruthapillai A; Vadivel S; Konidena RK; Sadhukhan T; Sengeni A
    Chem Commun (Camb); 2024 Apr; 60(33):4435-4438. PubMed ID: 38563393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Insights into Microbial One-Carbon Metabolic Enzymes Ni-Fe-S-Dependent Carbon Monoxide Dehydrogenases and Acetyl-CoA Synthases.
    Biester A; Marcano-Delgado AN; Drennan CL
    Biochemistry; 2022 Dec; 61(24):2797-2805. PubMed ID: 36137563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallographic Characterization of the Carbonylated A-Cluster in Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase.
    Cohen SE; Can M; Wittenborn EC; Hendrickson RA; Ragsdale SW; Drennan CL
    ACS Catal; 2020 Sep; 10(17):9741-9746. PubMed ID: 33495716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative-Stain Electron Microscopy Reveals Dramatic Structural Rearrangements in Ni-Fe-S-Dependent Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase.
    Cohen SE; Brignole EJ; Wittenborn EC; Can M; Thompson S; Ragsdale SW; Drennan CL
    Structure; 2021 Jan; 29(1):43-49.e3. PubMed ID: 32937101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The physiological effect of heavy metals and volatile fatty acids on
    Abdel Azim A; Rittmann SKR; Fino D; Bochmann G
    Biotechnol Biofuels; 2018; 11():301. PubMed ID: 30410576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray Absorption Spectroscopy Reveals an Organometallic Ni-C Bond in the CO-Treated Form of Acetyl-CoA Synthase.
    Can M; Giles LJ; Ragsdale SW; Sarangi R
    Biochemistry; 2017 Mar; 56(9):1248-1260. PubMed ID: 28186407
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.