BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 15049816)

  • 1. Oxidative stress triggers thiol oxidation in the glyceraldehyde-3-phosphate dehydrogenase of Staphylococcus aureus.
    Weber H; Engelmann S; Becher D; Hecker M
    Mol Microbiol; 2004 Apr; 52(1):133-40. PubMed ID: 15049816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions.
    Hwang NR; Yim SH; Kim YM; Jeong J; Song EJ; Lee Y; Lee JH; Choi S; Lee KJ
    Biochem J; 2009 Sep; 423(2):253-64. PubMed ID: 19650766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The thioredoxin-independent isoform of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by glutathionylation.
    Zaffagnini M; Michelet L; Marchand C; Sparla F; Decottignies P; Le Maréchal P; Miginiac-Maslow M; Noctor G; Trost P; Lemaire SD
    FEBS J; 2007 Jan; 274(1):212-26. PubMed ID: 17140414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence thiol modification assay: oxidatively modified proteins in Bacillus subtilis.
    Hochgräfe F; Mostertz J; Albrecht D; Hecker M
    Mol Microbiol; 2005 Oct; 58(2):409-25. PubMed ID: 16194229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic detection of hydrogen peroxide-sensitive thiol proteins in Jurkat cells.
    Baty JW; Hampton MB; Winterbourn CC
    Biochem J; 2005 Aug; 389(Pt 3):785-95. PubMed ID: 15801906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomics of the oxidative stress response induced by hydrogen peroxide and paraquat reveals a novel AhpC-like protein in Pseudomonas aeruginosa.
    Hare NJ; Scott NE; Shin EH; Connolly AM; Larsen MR; Palmisano G; Cordwell SJ
    Proteomics; 2011 Aug; 11(15):3056-69. PubMed ID: 21674802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and characterization of an H2O2-resistant immortal lens epithelial cell line.
    Spector A; Wang RR; Ma W; Kleiman NJ
    Invest Ophthalmol Vis Sci; 2000 Mar; 41(3):832-43. PubMed ID: 10711701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae.
    Shenton D; Grant CM
    Biochem J; 2003 Sep; 374(Pt 2):513-9. PubMed ID: 12755685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method for detection of overoxidation of cysteines: peroxiredoxins are oxidized in vivo at the active-site cysteine during oxidative stress.
    Wagner E; Luche S; Penna L; Chevallet M; Van Dorsselaer A; Leize-Wagner E; Rabilloud T
    Biochem J; 2002 Sep; 366(Pt 3):777-85. PubMed ID: 12059788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome analyses of Staphylococcus aureus in growing and non-growing cells: a physiological approach.
    Kohler C; Wolff S; Albrecht D; Fuchs S; Becher D; Büttner K; Engelmann S; Hecker M
    Int J Med Microbiol; 2005 Dec; 295(8):547-65. PubMed ID: 16325551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis of antioxidant strategies of Staphylococcus aureus: diverse responses to different oxidants.
    Wolf C; Hochgräfe F; Kusch H; Albrecht D; Hecker M; Engelmann S
    Proteomics; 2008 Aug; 8(15):3139-53. PubMed ID: 18604844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-dependent variations of cell response to oxidative stress: proteomic approach to protein expression and phosphorylation.
    Miura Y; Kano M; Abe K; Urano S; Suzuki S; Toda T
    Electrophoresis; 2005 Jul; 26(14):2786-96. PubMed ID: 15966013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the mechanism of oxidative modification of human glyceraldehyde-3-phosphate dehydrogenase by glutathione: catalysis by glutaredoxin.
    Lind C; Gerdes R; Schuppe-Koistinen I; Cotgreave IA
    Biochem Biophys Res Commun; 1998 Jun; 247(2):481-6. PubMed ID: 9642155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic identification of oxidatively modified retinal proteins in a chronic pressure-induced rat model of glaucoma.
    Tezel G; Yang X; Cai J
    Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3177-87. PubMed ID: 16123417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thiol specific oxidative stress response in Mycobacteria.
    Dosanjh NS; Rawat M; Chung JH; Av-Gay Y
    FEMS Microbiol Lett; 2005 Aug; 249(1):87-94. PubMed ID: 16006064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein expression profiles in Saccharomyces cerevisiae during apoptosis induced by H2O2.
    Magherini F; Tani C; Gamberi T; Caselli A; Bianchi L; Bini L; Modesti A
    Proteomics; 2007 May; 7(9):1434-45. PubMed ID: 17469077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CP12-mediated protection of Calvin-Benson cycle enzymes from oxidative stress.
    Marri L; Thieulin-Pardo G; Lebrun R; Puppo R; Zaffagnini M; Trost P; Gontero B; Sparla F
    Biochimie; 2014 Feb; 97():228-37. PubMed ID: 24211189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variants of peroxiredoxins expression in response to hydroperoxide stress.
    Mitsumoto A; Takanezawa Y; Okawa K; Iwamatsu A; Nakagawa Y
    Free Radic Biol Med; 2001 Mar; 30(6):625-35. PubMed ID: 11295360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative proteomic analyses of the yeast Saccharomyces cerevisiae KNU5377 strain against menadione-induced oxidative stress.
    Kim I; Yun H; Jin I
    J Microbiol Biotechnol; 2007 Feb; 17(2):207-17. PubMed ID: 18051751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subapoptogenic oxidative stress strongly increases the activity of the glycolytic key enzyme glyceraldehyde 3-phosphate dehydrogenase.
    Cerella C; D'Alessio M; Cristofanon S; De Nicola M; Radogna F; Dicato M; Diederich M; Ghibelli L
    Ann N Y Acad Sci; 2009 Aug; 1171():583-90. PubMed ID: 19723108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.