These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 15049826)
1. Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome. Nanamiya H; Akanuma G; Natori Y; Murayama R; Kosono S; Kudo T; Kobayashi K; Ogasawara N; Park SM; Ochi K; Kawamura F Mol Microbiol; 2004 Apr; 52(1):273-83. PubMed ID: 15049826 [TBL] [Abstract][Full Text] [Related]
2. A fail-safe system for the ribosome under zinc-limiting conditions in Bacillus subtilis. Natori Y; Nanamiya H; Akanuma G; Kosono S; Kudo T; Ochi K; Kawamura F Mol Microbiol; 2007 Jan; 63(1):294-307. PubMed ID: 17163968 [TBL] [Abstract][Full Text] [Related]
3. Towards an elucidation of the roles of the ribosome during different growth phases in Bacillus subtilis. Nanamiya H; Kawamura F Biosci Biotechnol Biochem; 2010; 74(3):451-61. PubMed ID: 20208344 [TBL] [Abstract][Full Text] [Related]
4. Liberation of zinc-containing L31 (RpmE) from ribosomes by its paralogous gene product, YtiA, in Bacillus subtilis. Akanuma G; Nanamiya H; Natori Y; Nomura N; Kawamura F J Bacteriol; 2006 Apr; 188(7):2715-20. PubMed ID: 16547061 [TBL] [Abstract][Full Text] [Related]
5. Proteomic study of the Bacillus subtilis ribosome: Finding of zinc-dependent replacement for ribosomal protein L31 paralogues. Nanamiya H; Kawamura F; Kosono S J Gen Appl Microbiol; 2006 Oct; 52(5):249-58. PubMed ID: 17310068 [TBL] [Abstract][Full Text] [Related]
6. Contributions of Zur-controlled ribosomal proteins to growth under zinc starvation conditions. Gabriel SE; Helmann JD J Bacteriol; 2009 Oct; 191(19):6116-22. PubMed ID: 19648245 [TBL] [Abstract][Full Text] [Related]
7. Autoregulation of subtilin biosynthesis in Bacillus subtilis: the role of the spa-box in subtilin-responsive promoters. Kleerebezem M; Bongers R; Rutten G; de Vos WM; Kuipers OP Peptides; 2004 Sep; 25(9):1415-24. PubMed ID: 15374645 [TBL] [Abstract][Full Text] [Related]
8. Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids. Shivers RP; Sonenshein AL Mol Microbiol; 2004 Jul; 53(2):599-611. PubMed ID: 15228537 [TBL] [Abstract][Full Text] [Related]
9. Search for additional targets of the transcriptional regulator CcpN from Bacillus subtilis. Eckart RA; Brantl S; Licht A FEMS Microbiol Lett; 2009 Oct; 299(2):223-31. PubMed ID: 19732150 [TBL] [Abstract][Full Text] [Related]
10. Formation of 100S ribosomes in Staphylococcus aureus by the hibernation promoting factor homolog SaHPF. Ueta M; Wada C; Wada A Genes Cells; 2010 Jan; 15(1):43-58. PubMed ID: 20015224 [TBL] [Abstract][Full Text] [Related]
11. The zinc-responsive regulator Zur controls a zinc uptake system and some ribosomal proteins in Streptomyces coelicolor A3(2). Shin JH; Oh SY; Kim SJ; Roe JH J Bacteriol; 2007 Jun; 189(11):4070-7. PubMed ID: 17416659 [TBL] [Abstract][Full Text] [Related]
12. Ribosomal protein L20 controls expression of the Bacillus subtilis infC operon via a transcription attenuation mechanism. Choonee N; Even S; Zig L; Putzer H Nucleic Acids Res; 2007; 35(5):1578-88. PubMed ID: 17289755 [TBL] [Abstract][Full Text] [Related]
13. Analysis of orthologous hrcA genes in Escherichia coli and Bacillus subtilis. Wiegert T; Hagmaier K; Schumann W FEMS Microbiol Lett; 2004 May; 234(1):9-17. PubMed ID: 15109714 [TBL] [Abstract][Full Text] [Related]
14. An acetoin-regulated expression system of Bacillus subtilis. Silbersack J; Jürgen B; Hecker M; Schneidinger B; Schmuck R; Schweder T Appl Microbiol Biotechnol; 2006 Dec; 73(4):895-903. PubMed ID: 16944132 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes. Lulko AT; Buist G; Kok J; Kuipers OP J Mol Microbiol Biotechnol; 2007; 12(1-2):82-95. PubMed ID: 17183215 [TBL] [Abstract][Full Text] [Related]
16. Expression of the promoter for the maltogenic amylase gene in Bacillus subtilis 168. Kim DY; Cha CH; Oh WS; Yoon YJ; Kim JW J Microbiol; 2004 Dec; 42(4):319-27. PubMed ID: 15650689 [TBL] [Abstract][Full Text] [Related]
17. YkgM and YkgO maintain translation by replacing their paralogs, zinc-binding ribosomal proteins L31 and L36, with identical activities. Ueta M; Wada C; Wada A Genes Cells; 2020 Aug; 25(8):562-581. PubMed ID: 32559334 [TBL] [Abstract][Full Text] [Related]
18. Altered gene expression in the transition phase by disruption of a Na+/H+ antiporter gene (shaA) in Bacillus subtilis. Kosono S; Asai K; Sadaie Y; Kudo T FEMS Microbiol Lett; 2004 Mar; 232(1):93-9. PubMed ID: 15019740 [TBL] [Abstract][Full Text] [Related]
19. Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis. Gaballa A; Helmann JD J Bacteriol; 1998 Nov; 180(22):5815-21. PubMed ID: 9811636 [TBL] [Abstract][Full Text] [Related]
20. The expression of the serine proteinase gene of Bacillus intermedius in Bacillus subtilis. Sharipova M; Balaban N; Kayumov A; Kirillova Y; Mardanova A; Gabdrakhmanova L; Leshchinskaya I; Rudenskaya G; Akimkina T; Safina D; Demidyuk I; Kostrov S Microbiol Res; 2008; 163(1):39-50. PubMed ID: 16782315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]