BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 15049844)

  • 1. The conformation and movement of Na channel inactivation gate peptide in linker between domain III and IV during inactivation by NMR spectroscopy and molecular modeling study.
    Lou BS; Lin TH; Lo CZ
    J Pept Res; 2004 Mar; 63(3):313-23. PubMed ID: 15049844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locations of local anesthetic dibucaine in model membranes and the interaction between dibucaine and a Na+ channel inactivation gate peptide as studied by 2H- and 1H-NMR spectroscopies.
    Kuroda Y; Ogawa M; Nasu H; Terashima M; Kasahara M; Kiyama Y; Wakita M; Fujiwara Y; Fujii N; Nakagawa T
    Biophys J; 1996 Sep; 71(3):1191-207. PubMed ID: 8873993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structure of the cytoplasmic linker between domain III-S6 and domain IV-S1 (III-IV linker) of the rat brain sodium channel in SDS micelles.
    Miyamoto K; Nakagawa T; Kuroda Y
    Biopolymers; 2001 Oct; 59(5):380-93. PubMed ID: 11514941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of local anesthetics with a peptide encompassing the IV/S4-S5 linker of the Na+ channel.
    Fraceto LF; Oyama S; Nakaie CR; Spisni A; de Paula E; Pertinhez TA
    Biophys Chem; 2006 Aug; 123(1):29-39. PubMed ID: 16687202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1H-NMR and circular dichroism spectroscopic studies on changes in secondary structures of the sodium channel inactivation gate peptides as caused by the pentapeptide KIFMK.
    Kuroda Y; Maeda Y; Miyamoto K; Tanaka K; Kanaori K; Otaka A; Fujii N; Nakagawa T
    Biophys J; 1999 Sep; 77(3):1363-73. PubMed ID: 10465748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interactions of phenytoin and its binding site in DI-S6 segment of Na+ channel voltage-gated peptide by NMR spectroscopy and molecular modeling study.
    Lou BS; Lin TH; Lo CZ
    J Pept Res; 2005 Jul; 66(1):27-38. PubMed ID: 15946193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Outward stabilization of the S4 segments in domains III and IV enhances lidocaine block of sodium channels.
    Sheets MF; Hanck DA
    J Physiol; 2007 Jul; 582(Pt 1):317-34. PubMed ID: 17510181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular modeling of local anesthetic drug binding by voltage-gated sodium channels.
    Lipkind GM; Fozzard HA
    Mol Pharmacol; 2005 Dec; 68(6):1611-22. PubMed ID: 16174788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanisms of gating and drug block of sodium channels.
    Catterall WA
    Novartis Found Symp; 2002; 241():206-18; discussion 218-32. PubMed ID: 11771647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Access and binding of local anesthetics in the closed sodium channel.
    Bruhova I; Tikhonov DB; Zhorov BS
    Mol Pharmacol; 2008 Oct; 74(4):1033-45. PubMed ID: 18653802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the non-covalent binding interaction of the Na+ channel inactivation gate peptide in a linker between domain III and IV with 5,5-diphenyhydantoin in electrospray ion trap tandem mass spectrometry.
    Lou BS; Chen YC; Wu HF
    Rapid Commun Mass Spectrom; 2007; 21(23):3795-802. PubMed ID: 17973233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of benzocaine analog interactions with the D4S6 segment of NaV4.1 voltage-gated sodium channels.
    Godwin SA; Cox JR; Wright SN
    Biophys Chem; 2005 Jan; 113(1):1-7. PubMed ID: 15617805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NH2-terminal inactivation peptide binding to C-type-inactivated Kv channels.
    Kurata HT; Wang Z; Fedida D
    J Gen Physiol; 2004 May; 123(5):505-20. PubMed ID: 15078918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-gated Na+ channel ligands and ATP: relative molecular similarity and implications for channel function.
    Williams WR
    J Pharm Pharmacol; 2006 Sep; 58(9):1235-41. PubMed ID: 16945182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na channel inactivation from open and closed states.
    Armstrong CM
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17991-6. PubMed ID: 17101981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural studies of synthetic peptides dissected from the voltage-gated sodium channel.
    Doak DG; Mulvey D; Kawaguchi K; Villalain J; Campbell ID
    J Mol Biol; 1996 May; 258(4):672-87. PubMed ID: 8637001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of insulin signalling by a synthetic peptide KIFMK suggests the cytoplasmic linker between DIII-S6 and DIV-S1 as a local anaesthetic binding site on the sodium channel.
    Hirose M; Kuroda Y; Sawa S; Nakagawa T; Hirata M; Sakaguchi M; Tanaka Y
    Br J Pharmacol; 2004 May; 142(1):222-8. PubMed ID: 15037518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Molecular mechanisms underlying gating activity of voltage dependent ion channels].
    Lu GW
    Sheng Li Ke Xue Jin Zhan; 1997 Oct; 28(4):306-10. PubMed ID: 11038679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure of the sodium channel inactivation gate.
    Rohl CA; Boeckman FA; Baker C; Scheuer T; Catterall WA; Klevit RE
    Biochemistry; 1999 Jan; 38(3):855-61. PubMed ID: 9893979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight toward epithelial Na+ channel mechanism revealed by the acid-sensing ion channel 1 structure.
    Stockand JD; Staruschenko A; Pochynyuk O; Booth RE; Silverthorn DU
    IUBMB Life; 2008 Sep; 60(9):620-8. PubMed ID: 18459164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.