BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 15050541)

  • 1. Mating-type heterokaryosis and selfing in Cryphonectria parasitica.
    McGuire IC; Marra RE; Milgroom MG
    Fungal Genet Biol; 2004 May; 41(5):521-33. PubMed ID: 15050541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterokaryon formation and parasexual recombination between vegetatively incompatible lineages in a population of the chestnut blight fungus, Cryphonectria parasitica.
    McGuire IC; Davis JE; Double ML; MacDonald WL; Rauscher JT; McCawley S; Milgroom MG
    Mol Ecol; 2005 Oct; 14(12):3657-69. PubMed ID: 16202087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of mating-type genes in the chestnut blight fungus, Cryphonectria parasitica.
    McGuire IC; Marra RE; Turgeon BG; Milgroom MG
    Fungal Genet Biol; 2001 Nov; 34(2):131-44. PubMed ID: 11686678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mating system of the fungus Cryphonectria parasitica: selfing and self-incompatibility.
    Marra RE; Milgroom MG
    Heredity (Edinb); 2001 Feb; 86(Pt 2):134-43. PubMed ID: 11380658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed mating in natural populations of the chestnut blight fungus, Cryphonectria parasitica.
    Marra RE; Cortesi P; Bissegger M; Milgroom MG
    Heredity (Edinb); 2004 Aug; 93(2):189-95. PubMed ID: 15241462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diverse programs of ascus development in pseudohomothallic species of Neurospora, Gelasinospora, and Podospora.
    Raju NB; Perkins DD
    Dev Genet; 1994; 15(1):104-18. PubMed ID: 8187347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breeding systems in the lichen-forming fungal genus Cladonia.
    Seymour FA; Crittenden PD; Dickinson MJ; Paoletti M; Montiel D; Cho L; Dyer PS
    Fungal Genet Biol; 2005 Jun; 42(6):554-63. PubMed ID: 15893256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PCR amplification of the mating-type idiomorphs in Cryphonectria parasitica.
    Marra RE; Milgroom MG
    Mol Ecol; 1999 Nov; 8(11):1947-50. PubMed ID: 10620237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Markers linked to vegetative incompatibility (vic) genes and a region of high heterogeneity and reduced recombination near the mating type locus (MAT) in Cryphonectria parasitica.
    Kubisiak TL; Milgroom MG
    Fungal Genet Biol; 2006 Jun; 43(6):453-63. PubMed ID: 16554177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurospora Heterokaryons with Complementary Duplications and Deficiencies in Their Constituent Nuclei Provide an Approach to Identify Nucleus-Limited Genes.
    Giri DA; Rekha S; Kasbekar DP
    G3 (Bethesda); 2015 Apr; 5(6):1263-72. PubMed ID: 25897010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterokaryons and parasexual recombinants of Cryphonectria parasitica in two clonal populations in southeastern Europe.
    Milgroom MG; Sotirovski K; Risteski M; Brewer MT
    Fungal Genet Biol; 2009 Nov; 46(11):849-54. PubMed ID: 19643198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterokaryon analysis of a Cdc48-like gene, CpCdc48, from the chestnut blight fungus Cryphonectria parasitica demonstrates it is essential for cell division and growth.
    Ko YH; So KK; Kim JM; Kim DH
    Fungal Genet Biol; 2016 Mar; 88():1-12. PubMed ID: 26802617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clonal population structure of the chestnut blight fungus in expanding ranges in southeastern Europe.
    Milgroom MG; Sotirovski K; Spica D; Davis JE; Brewer MT; Milev M; Cortesi P
    Mol Ecol; 2008 Oct; 17(20):4446-58. PubMed ID: 18803594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient cloning of ascomycete mating type genes by PCR amplification of the conserved MAT HMG Box.
    Arie T; Christiansen SK; Yoder OC; Turgeon BG
    Fungal Genet Biol; 1997 Feb; 21(1):118-30. PubMed ID: 9126621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spore behaviors reveal a category of mating-competent infertile heterokaryons in the offspring of the medicinal fungus Agaricus subrufescens.
    Rocha de Brito M; Foulongne-Oriol M; Moinard M; Souza Dias E; Savoie JM; Callac P
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):781-96. PubMed ID: 26497018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of a hypoviral-regulated cppk1 gene in a chestnut blight fungus, Cryphonectria parasitica, results in microcolonies.
    Kim MJ; Park SM; Kim YH; Cha BJ; Yang MS; Kim DH
    Fungal Genet Biol; 2004 May; 41(5):482-92. PubMed ID: 15050537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperparasites influence population structure of the chestnut blight pathogen, Cryphonectria parasitica.
    Springer JC; Davelos Baines AL; Fulbright DW; Chansler MT; Jarosz AM
    Phytopathology; 2013 Dec; 103(12):1280-6. PubMed ID: 23819549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion of the Cochliobolus heterostrophus mating-type (MAT) locus promotes the function of MAT transgenes.
    Wirsel S; Turgeon BG; Yoder OC
    Curr Genet; 1996 Feb; 29(3):241-9. PubMed ID: 8595670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic diversification of the chestnut blight fungus Cryphonectria parasitica and its associated hypovirus in Germany.
    Peters FS; Busskamp J; Prospero S; Rigling D; Metzler B
    Fungal Biol; 2014 Feb; 118(2):193-210. PubMed ID: 24528641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of an essential Ran-binding protein gene, CpRbp1, from the chestnut blight fungus Cryphonectria parasitica using heterokaryon rescue.
    Ko YH; Choi SY; So KK; Kim JM; Chun J; Kim DH
    Sci Rep; 2020 May; 10(1):8111. PubMed ID: 32415177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.