These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 15050690)

  • 1. Diffusive oxidative stress following acute spinal cord injury in guinea pigs and its inhibition by polyethylene glycol.
    Luo J; Shi R
    Neurosci Lett; 2004 Apr; 359(3):167-70. PubMed ID: 15050690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional silica nanoparticle-mediated neuronal membrane sealing following traumatic spinal cord injury.
    Cho Y; Shi R; Ivanisevic A; Borgens RB
    J Neurosci Res; 2010 May; 88(7):1433-44. PubMed ID: 19998478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyethylene glycol inhibits apoptotic cell death following traumatic spinal cord injury.
    Luo J; Shi R
    Brain Res; 2007 Jun; 1155():10-6. PubMed ID: 17512912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyethylene glycol improves function and reduces oxidative stress in synaptosomal preparations following spinal cord injury.
    Luo J; Borgens R; Shi R
    J Neurotrauma; 2004 Aug; 21(8):994-1007. PubMed ID: 15318999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erythropoietin improves oxidative stress following spinal cord trauma in rats.
    Yazihan N; Uzuner K; Salman B; Vural M; Koken T; Arslantas A
    Injury; 2008 Dec; 39(12):1408-13. PubMed ID: 18635178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acrolein scavenging: a potential novel mechanism of attenuating oxidative stress following spinal cord injury.
    Hamann K; Shi R
    J Neurochem; 2009 Dec; 111(6):1348-56. PubMed ID: 19780896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systemic polyethylene glycol promotes neurological recovery and tissue sparing in rats after cervical spinal cord injury.
    Baptiste DC; Austin JW; Zhao W; Nahirny A; Sugita S; Fehlings MG
    J Neuropathol Exp Neurol; 2009 Jun; 68(6):661-76. PubMed ID: 19458542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury.
    Huang WL; King VR; Curran OE; Dyall SC; Ward RE; Lal N; Priestley JV; Michael-Titus AT
    Brain; 2007 Nov; 130(Pt 11):3004-19. PubMed ID: 17901087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of polyethylene glycol and magnesium sulfate administration on clinically relevant neurological outcomes after spinal cord injury in the rat.
    Ditor DS; John SM; Roy J; Marx JC; Kittmer C; Weaver LC
    J Neurosci Res; 2007 May; 85(7):1458-67. PubMed ID: 17410603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Omega-3 fatty acids and neurological injury.
    Michael-Titus AT
    Prostaglandins Leukot Essent Fatty Acids; 2007; 77(5-6):295-300. PubMed ID: 18036801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prolonged focal application of polyethylene glycol induces conduction block in guinea pig spinal cord white matter.
    Cole A; Shi R
    Toxicol In Vitro; 2005 Mar; 19(2):215-20. PubMed ID: 15649635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyethylene glycol immediately repairs neuronal membranes and inhibits free radical production after acute spinal cord injury.
    Luo J; Borgens R; Shi R
    J Neurochem; 2002 Oct; 83(2):471-80. PubMed ID: 12423257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates.
    Poon PC; Gupta D; Shoichet MS; Tator CH
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2853-9. PubMed ID: 18246008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-dependent changes of lipid peroxidation and antioxidative status in nerve tissues of hens treated with tri-ortho-cresyl phosphate (TOCP).
    Zhang LP; Wang QS; Guo X; Zhu YJ; Zhou GZ; Xie KQ
    Toxicology; 2007 Sep; 239(1-2):45-52. PubMed ID: 17662514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promoting glutathione synthesis after spinal cord trauma decreases secondary damage and promotes retention of function.
    Kamencic H; Griebel RW; Lyon AW; Paterson PG; Juurlink BH
    FASEB J; 2001 Jan; 15(1):243-250. PubMed ID: 11149912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translational constraint influences dynamic spinal canal occlusion of the thoracic spine: an in vitro experimental study.
    Zhu Q; Lane C; Ching RP; Gordon JD; Fisher CG; Dvorak MF; Cripton PA; Oxland TR
    J Biomech; 2008; 41(1):171-9. PubMed ID: 17709110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrin inhibiting molecule decreases oxidative damage and improves neurological function after spinal cord injury.
    Bao F; Chen Y; Schneider KA; Weaver LC
    Exp Neurol; 2008 Dec; 214(2):160-7. PubMed ID: 18926823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetyl-L-carnitine-induced up-regulation of heat shock proteins protects cortical neurons against amyloid-beta peptide 1-42-mediated oxidative stress and neurotoxicity: implications for Alzheimer's disease.
    Abdul HM; Calabrese V; Calvani M; Butterfield DA
    J Neurosci Res; 2006 Aug; 84(2):398-408. PubMed ID: 16634066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of endogenous glutathione in the secondary damage in experimental spinal cord injury in mice.
    Genovese T; Mazzon E; Esposito E; MuiĆ  C; Di Paola R; Di Bella P; Bramanti P; Cuzzocrea S
    Neurosci Lett; 2007 Aug; 423(1):41-6. PubMed ID: 17669594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nephrotoxicity and its prevention by taurine in tamoxifen induced oxidative stress in mice.
    Tabassum H; Parvez S; Rehman H; Dev Banerjee B; Siemen D; Raisuddin S
    Hum Exp Toxicol; 2007 Jun; 26(6):509-18. PubMed ID: 17698946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.