These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 15050725)

  • 1. Activation of the primary and association auditory cortex by the transition of sound intensity: a new method for functional examination of the auditory cortex in humans.
    Okada T; Honda M; Okamoto J; Sadato N
    Neurosci Lett; 2004 Apr; 359(1-2):119-23. PubMed ID: 15050725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Event-related fMRI of the auditory cortex.
    Belin P; Zatorre RJ; Hoge R; Evans AC; Pike B
    Neuroimage; 1999 Oct; 10(4):417-29. PubMed ID: 10493900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial dissociation of changes of level and signal-to-noise ratio in auditory cortex for tones in noise.
    Ernst SM; Verhey JL; Uppenkamp S
    Neuroimage; 2008 Nov; 43(2):321-8. PubMed ID: 18722535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BOLD correlates of edge detection in human auditory cortex.
    Herdener M; Esposito F; Di Salle F; Lehmann C; Bach DR; Scheffler K; Seifritz E
    Neuroimage; 2007 May; 36(1):194-201. PubMed ID: 17395491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fetal cortical activation to sound at 33 weeks of gestation: a functional MRI study.
    Jardri R; Pins D; Houfflin-Debarge V; Chaffiotte C; Rocourt N; Pruvo JP; Steinling M; Delion P; Thomas P
    Neuroimage; 2008 Aug; 42(1):10-8. PubMed ID: 18539048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auditory cortex responses to the transition from monophonic to pseudo-stereo sound.
    Ross B; Herdman AT; Wollbrink A; Pantev C
    Neurol Clin Neurophysiol; 2004 Nov; 2004():18. PubMed ID: 16012692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sound level dependence of the primary auditory cortex: Simultaneous measurement with 61-channel EEG and fMRI.
    Mulert C; Jäger L; Propp S; Karch S; Störmann S; Pogarell O; Möller HJ; Juckel G; Hegerl U
    Neuroimage; 2005 Oct; 28(1):49-58. PubMed ID: 16006148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Dominant hemisphere and tonotopic organization of auditory functional MRI in Chinese].
    Yang M; Liu B; Teng GJ; Huang ZC; Gao WW; Wang J
    Zhonghua Yi Xue Za Zhi; 2008 Jun; 88(23):1599-602. PubMed ID: 19035097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An auditory fMRI correlate of impulsivity.
    Röhl M; Uppenkamp S
    Psychiatry Res; 2010 Feb; 181(2):145-50. PubMed ID: 20083394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occasional changes in sound location enhance middle latency evoked responses.
    Sonnadara RR; Alain C; Trainor LJ
    Brain Res; 2006 Mar; 1076(1):187-92. PubMed ID: 16487494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dependence of the auditory evoked N1m decrement on the bandwidth of preceding notch-filtered noise.
    Okamoto H; Kakigi R; Gunji A; Kubo T; Pantev C
    Eur J Neurosci; 2005 Apr; 21(7):1957-61. PubMed ID: 15869488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silent functional magnetic resonance imaging (FMRI) of tonotopicity and stimulus intensity coding in human primary auditory cortex.
    Yetkin FZ; Roland PS; Christensen WF; Purdy PD
    Laryngoscope; 2004 Mar; 114(3):512-8. PubMed ID: 15091227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-term sound temporal envelope characteristics determine multisecond time patterns of activity in human auditory cortex as shown by fMRI.
    Harms MP; Guinan JJ; Sigalovsky IS; Melcher JR
    J Neurophysiol; 2005 Jan; 93(1):210-22. PubMed ID: 15306629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sound level dependence of auditory evoked potentials: simultaneous EEG recording and low-noise fMRI.
    Thaerig S; Behne N; Schadow J; Lenz D; Scheich H; Brechmann A; Herrmann CS
    Int J Psychophysiol; 2008 Mar; 67(3):235-41. PubMed ID: 17707939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural correlates of auditory repetition priming: reduced fMRI activation in the auditory cortex.
    Bergerbest D; Ghahremani DG; Gabrieli JD
    J Cogn Neurosci; 2004; 16(6):966-77. PubMed ID: 15298784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing BOLD response in the auditory system by neurophysiologically tuned fMRI sequence.
    Seifritz E; Di Salle F; Esposito F; Herdener M; Neuhoff JG; Scheffler K
    Neuroimage; 2006 Feb; 29(3):1013-22. PubMed ID: 16253522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attention modulates sound processing in human auditory cortex but not the inferior colliculus.
    Rinne T; Stecker GC; Kang X; Yund EW; Herron TJ; Woods DL
    Neuroreport; 2007 Aug; 18(13):1311-4. PubMed ID: 17762703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formant transition-specific adaptation by lipreading of left auditory cortex N1m.
    Jääskeläinen IP; Kauramäki J; Tujunen J; Sams M
    Neuroreport; 2008 Jan; 19(1):93-7. PubMed ID: 18281900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between the neuromagnetic responses to sound energy onset and pitch onset suggests common generators.
    Seither-Preisler A; Krumbholz K; Patterson R; Seither S; Lütkenhöner B
    Eur J Neurosci; 2004 Jun; 19(11):3073-80. PubMed ID: 15182315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multisensory interactions within human primary cortices revealed by BOLD dynamics.
    Martuzzi R; Murray MM; Michel CM; Thiran JP; Maeder PP; Clarke S; Meuli RA
    Cereb Cortex; 2007 Jul; 17(7):1672-9. PubMed ID: 16968869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.