These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 15051248)

  • 1. Fate and transport of pathogens in lakes and reservoirs.
    Brookes JD; Antenucci J; Hipsey M; Burch MD; Ashbolt NJ; Ferguson C
    Environ Int; 2004 Jul; 30(5):741-59. PubMed ID: 15051248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review.
    Hijnen WA; Beerendonk EF; Medema GJ
    Water Res; 2006 Jan; 40(1):3-22. PubMed ID: 16386286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association of Cryptosporidium with bovine faecal particles and implications for risk reduction by settling within water supply reservoirs.
    Brookes JD; Davies CM; Hipsey MR; Antenucci JP
    J Water Health; 2006 Mar; 4(1):87-98. PubMed ID: 16604841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hydrodynamics-based approach to evaluating the risk of waterborne pathogens entering drinking water intakes in a large, stratified lake.
    Hoyer AB; Schladow SG; Rueda FJ
    Water Res; 2015 Oct; 83():227-36. PubMed ID: 26162312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental inactivation of Cryptosporidium oocysts in catchment soils.
    Davies CM; Altavilla N; Krogh M; Ferguson CM; Deere DA; Ashbolt NJ
    J Appl Microbiol; 2005; 98(2):308-17. PubMed ID: 15659185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solar UV reduces Cryptosporidium parvum oocyst infectivity in environmental waters.
    King BJ; Hoefel D; Daminato DP; Fanok S; Monis PT
    J Appl Microbiol; 2008 May; 104(5):1311-23. PubMed ID: 18248370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal relationships among indicator bacteria, pathogenic bacteria, Cryptosporidium oocysts, Giardia cysts, and hydrological indices for surface waters within an agricultural landscape.
    Wilkes G; Edge T; Gannon V; Jokinen C; Lyautey E; Medeiros D; Neumann N; Ruecker N; Topp E; Lapen DR
    Water Res; 2009 May; 43(8):2209-23. PubMed ID: 19339033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New trends in emerging pathogens.
    Skovgaard N
    Int J Food Microbiol; 2007 Dec; 120(3):217-24. PubMed ID: 17976849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pathogen concentrations on removal of Cryptosporidium and Giardia by conventional drinking water treatment.
    Assavasilavasukul P; Lau BL; Harrington GW; Hoffman RM; Borchardt MA
    Water Res; 2008 May; 42(10-11):2678-90. PubMed ID: 18313095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative risk assessment of Cryptosporidium in surface water treatment.
    Medema GJ; Hoogenboezem W; van der Veer AJ; Ketelaars HA; Hijnen WA; Nobel PJ
    Water Sci Technol; 2003; 47(3):241-7. PubMed ID: 12639036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Massive microbiological groundwater contamination associated with a waterborne outbreak in Lake Erie, South Bass Island, Ohio.
    Fong TT; Mansfield LS; Wilson DL; Schwab DJ; Molloy SL; Rose JB
    Environ Health Perspect; 2007 Jun; 115(6):856-64. PubMed ID: 17589591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deterministic model to quantify pathogen loads in drinking water catchments: pathogen budget for the Wingecarribee.
    Ferguson CM; Croke B; Ashbolt NJ; Deere DA
    Water Sci Technol; 2005; 52(8):191-7. PubMed ID: 16312967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presence of Giardia cysts and Cryptosporidium oocysts in drinking water supplies in northern Spain.
    Carmena D; Aguinagalde X; Zigorraga C; Fernández-Crespo JC; Ocio JA
    J Appl Microbiol; 2007 Mar; 102(3):619-29. PubMed ID: 17309610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of land use and watershed characteristics on protozoa contamination in a potential drinking water resources reservoir.
    Keeley A; Faulkner BR
    Water Res; 2008 May; 42(10-11):2803-13. PubMed ID: 18367230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of source water pathogen contamination.
    Dechesne M; Soyeux E
    J Water Health; 2007; 5 Suppl 1():39-50. PubMed ID: 17890835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The response of Cryptosporidium parvum to UV light.
    Rochelle PA; Upton SJ; Montelone BA; Woods K
    Trends Parasitol; 2005 Feb; 21(2):81-7. PubMed ID: 15664531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a risk-based index for source water protection planning, which supports the reduction of pathogens from agricultural activity entering water resources.
    Goss M; Richards C
    J Environ Manage; 2008 Jun; 87(4):623-32. PubMed ID: 18158213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the public health risk of microbial intrusion events in distribution systems: conceptual model, available data, and challenges.
    Besner MC; Prévost M; Regli S
    Water Res; 2011 Jan; 45(3):961-79. PubMed ID: 21106216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a process-based model to predict pathogen budgets for the Sydney drinking water catchment.
    Ferguson CM; Croke BF; Beatson PJ; Ashbolt NJ; Deere DA
    J Water Health; 2007 Jun; 5(2):187-208. PubMed ID: 17674569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance assessment model development and parameter acquisition for analysis of the transport of natural radionuclides in a Mediterranean watershed.
    Agüero A
    Sci Total Environ; 2005 Sep; 348(1-3):32-50. PubMed ID: 16162312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.